wave activity flux
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 1)

Climate ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 106
Author(s):  
Faranak Bahrami ◽  
Abbas Ranjbar Saadatabadi ◽  
Nir Y. Krakauer ◽  
Tayyebeh Mesbahzadeh ◽  
Farshad Soleimani Sardoo

We compared the effect on autumn (October, November, December) precipitation over Iran during two types of El Niño–Southern Oscillation (ENSO) phase transitions from the perspective of anomalies in wave activity flux and sea level pressure along the Atlantic–Mediterranean storm track, as well as precipitation. We used Oceanic Niño Index (ONI) to identify the transition phases of ENSO (El Niño to La Niña and also La Niña to El Niño, referred to as type 1 and type 2, respectively). Climate data during the period of 1950 to 2019 used in this study is derived from NCEP-NCAR reanalysis. In order to investigate the intensity and direction of Rossby wave trains in different ENSO transitions, we used the wave activity flux parameter, and to evaluate the statistical significance of values, we calculated Student’s t-test. The impact of the Atlantic storm track on the Mediterranean storm track was shown to be greater in type 2 transitions. Further, the existence of a stronger wave source region in the Mediterranean region during type 2 transitions was established. Results also showed the weakening of the Iceland low and Azores high pressure in type 1 transitions and the reinforcement of both in type 2, with the differences being significant at up to a 99% confidence level. Pressure values over Iran were at or below normal in type 1 years and below normal in type 2. Finally, the composite analysis of precipitation anomaly revealed that during ENSO type 1 transitions, most regions of Iran experienced low precipitation, while in type 2, the precipitation was more than average, statistically significant at 75% confidence level or higher over the northern half of the country.


2021 ◽  
Author(s):  
Zakieh Alizadeh ◽  
Alireza Mohebalhojeh ◽  
Farhang Ahmadi-Givi ◽  
Mohammad Mirzaei ◽  
Sakineh Khansalari

<p>In recent history, the eastern Mediterranean and Saudi Arabia have experienced extreme precipitation events involving significant financial and human losses. An important subset of these events is associated with the activation of the Red Sea trough (RST). In this study, the effect and role of Rossby wave propagation during three cases (Dec 1993, Jan 2011 and May 1982) of the active RST is investigated. Meanwhile, the synoptic and dynamic factors related to the tropical-extratropical interaction and the lower and upper levels of troposphere are discussed for each event. The data used were extracted from the Era-Interim subsection of the ECMWF database with a time step of 6 hours and a spatial step of 80 km in both latitude and longitude directions.</p><p>Despite differences in humidity sources and the amount of hot and humid air ascent in each event, a general pattern can be deduced in all three events. The results show that in all events from a few days before the maximum rainfall, fluxes of heat and humidity are directed to Saudi Arabia and the eastern Mediterranean and the RST is strengthened and extended to the east of the Mediterranean Sea. At the same time, a trough with varying intensity at the level of 500 hPa in the eastern Mediterranean exerts a southward influence, which is caused by the anticyclonic Rossby wave breaking. At the upper levels, associated with the wave activity flux divergence and convergence areas of the Mediterranean storm track, higher amounts of Rossby wave activity enter the northeast region of Africa. Also the meridional convergence of the wave activity flux strengthens the meridional circulation in the north of the Red Sea. Increased horizontal wave activity flux to the northeast Africa and the Red Sea is led to increased head and humidity flux to the region. On the other hand, the weakening of the extension of the Azores high pressure over Africa facilitates the tropical and extratropical interactions over the region. Also in the north or northeast of the Red Sea, a surface low pressure is formed. Having a different source in each case, the mid-level troughs exhibit a northwest-southeast title with respect to the surface lows which lead to baroclinic development and intensification of precipitation events in the eastern Mediterranean and Saudi Arabia.</p><p><strong>Keywords: </strong>Extreme precipitation, Rossby wave activity flux, Mediterranean storm track, upper level trough, meridional circulation, baroclinic development</p>


2020 ◽  
Author(s):  
Noboru Nakamura

<p>We present evidence that stratospheric sudden warmings (SSWs) are, on average, a threshold behavior of finite-amplitude Rossby waves arising from wave-mean flow interaction. Competition between an increasing wave activity and a decreasing zonal-mean zonal wind sets a limit to the upward wave activity flux of a stationary Rossby wave.  A rapid, spontaneous vortex breakdown occurs once the upwelling wave activity flux reaches the limit, or equivalently, once the zonal-mean zonal wind drops below a certain fraction of the wave-free, reference-state wind obtained from the zonalized quasigeostrophic potential vorticity.  This threshold faction is 0.5 in theory and about 0.3 in reanalyses.  We use the ratio of the zonal-mean zonal wind to the reference-state wind as a local, instantaneous measure of the proximity to vortex breakdown, i.e. preconditioning.  The ratio generally stays above the threshold during strong-vortex winters until a pronounced final warming, whereas during weak-vortex winters it approaches the threshold early in the season, culminating in a precipitous drop in midwinter as SSWs form. The essence of the threshold behavior is captured by a semiempirical 1D model of SSWs, analogous to the “traffic jam” model of Nakamura and Huang for atmospheric blocking. This model predicts salient features of SSWs including rapid vortex breakdown and downward migration of the wave activity/zonal wind anomalies, with analytical expressions for the respective timescales. Model’s response to a variety of transient wave forcing and damping is discussed.</p><p> </p><p> </p><div> </div><p> </p>


2020 ◽  
Author(s):  
Veeshan Narinesingh ◽  
James Booth ◽  
Spencer Clark ◽  
Yi Ming

<p>Atmospheric blocking can have important impacts on weather hazards, but the fundamental dynamics of blocking are not yet fully understood. As such, this work investigates the influence of topography on atmospheric blocking in terms of dynamics, spatial frequency, duration and displacement. Using an idealized GCM, an aquaplanet integration, and integrations with topography are analyzed. Block-centered composites show midlatitude aquaplanet blocks exhibit similar wave activity flux behavior to those observed in reality, whereas high-latitude blocks do not. The addition of topography significantly increases blocking and determines distinct regions where blocks are most likely to occur. These regions are found near high-pressure anomalies in the stationary waves and near storm track exit regions. Focusing on block duration, blocks originating near topography are found to last longer than those that are formed without or far from topography but have qualitatively similar evolutions in terms of nearby geopotential height anomalies and wave activity fluxes in composites.  Integrations with two mountains have greater amounts of blocking compared to the single mountain case, however, the longitudinal spacing between the mountains is important for how much blocking occurs. Comparison between integrations with longitudinally long and short ocean basins show that more blocking occurs when storm track exits spatially overlap with high-pressure maxima in stationary waves. These results have real-world implications, as they help explain the differences in blocking between the Northern and Southern Hemisphere, and the differences between the Pacific and Atlantic regions in the Northern Hemisphere.</p>


2020 ◽  
Author(s):  
Zakieh Alizadeh ◽  
Alireza Mohebalhojeh ◽  
Farhang Ahmadi-Givi ◽  
Mohammad Mirzaei ◽  
Sakineh Khansalari

<p>The Red Sea Trough (RST) is an inverted trough of low-pressure system at lower tropospheric levels over the northeast Africa and the Red Sea. The previous research conducted on the RST suggests that when this system is activated, heavy rainfall occurs in large parts of the eastern Mediterranean and southwest Asia. The main aim of this article is to investigate the way Rossby wave activity at the upper level troposphere and its interaction with the lower tropospheric circulation activate the RST.</p><p>This study was carried out in three stages: first, the climatological behavior of RST in winter (December to February) was studied and then, cyclones were identified and tracked in the northeast Africa and the Red Sea using a cyclone tracking scheme. In the second stage, the Rossby wave activity flux at the 300 hPa level was considered in the region. Finally, the interaction between the wave activity flux and the RST was investigated. Two critical phases for the wave flux entering the region were considered. The positive (negative) critical phase corresponds to the period when the highest (lowest) values of the wave activity flux enter the northeast Africa and Red Sea regions. The results show that, during the positive critical phase, the RST strengthens and extends to the northeast of the Mediterranean Sea and cyclogenesis is increased in the northeast of Africa and especially in the northeast of the Red Sea. The main reasons for this phenomenon can be deduced as follows:</p><p>With regard to the divergence of wave activity flux and its southward flux, the source of energy and activity needed for cyclogenesis and reinforcement of the RST is provided by the flux convergence core of the North Atlantic storm track. The results of the wave activity time series show that part of the activity from the northeast is integrated with the convergence core of the Mediterranean storm track, leading to enhancement of the cyclones in the northeast of the Red Sea and the extension of the RST to the northeast. But most of the activity joins the flux divergence core of the Mediterranean storm track in the west of the region and results in amplification of Sudan’s cyclones and activation of the RST along both the meridional and zonal directions; the important point to consider is that the wave activity flux entering the region is greater in the zonal direction. In addition to the southward propagation of the wave activity, the packets of flux convergence and divergence in the central North Atlantic are tilted in the northeast–southwest direction, indicating the dominance of anticyclonic Rossby wave breaking. Associated with the upper-level wave activity fluxes entering the region, there is jet enhancement and low-level cold advection from higher latitudes to the tropical and subtropical regions. The difference of RST between the positive and negative critical phases is turned out to be statistically significant with confidence levels of greater than or equal to 90%.</p>


2020 ◽  
Vol 77 (3) ◽  
pp. 943-964 ◽  
Author(s):  
Noboru Nakamura ◽  
Jonathan Falk ◽  
Sandro W. Lubis

Abstract This paper examines the role of wave–mean flow interaction in the onset and suddenness of stratospheric sudden warmings (SSWs). Evidence is presented that SSWs are, on average, a threshold behavior of finite-amplitude Rossby waves arising from the competition between an increasing wave activity A and a decreasing zonal-mean zonal wind u¯. The competition puts a limit to the wave activity flux that a stationary Rossby wave can transmit upward. A rapid, spontaneous vortex breakdown occurs once the upwelling wave activity flux reaches the limit, or equivalently, once u¯ drops below a certain fraction of uREF, a wave-free, reference-state wind inverted from the zonalized quasigeostrophic potential vorticity. This fraction is 0.5 in theory and about 0.3 in reanalyses. We propose r≡u¯/uREF as a local, instantaneous measure of the proximity to vortex breakdown (i.e., preconditioning). The ratio r generally stays above the threshold during strong-vortex winters until a pronounced final warming, whereas during weak-vortex winters it approaches the threshold early in the season, culminating in a precipitous drop in midwinter as SSWs form. The essence of the threshold behavior is captured by a semiempirical 1D model of SSWs, similar to the “traffic jam” model of Nakamura and Huang for atmospheric blocking. This model predicts salient features of SSWs including rapid vortex breakdown and downward migration of the wave activity/zonal wind anomalies, with analytical expressions for the respective time scales. The model’s response to a variety of transient wave forcing and damping is discussed.


2020 ◽  
Author(s):  
Veeshan Narinesingh ◽  
James F. Booth ◽  
Spencer K. Clark ◽  
Yi Ming

Abstract. Atmospheric blocking can have important impacts on weather hazards, but the fundamental dynamics of blocking are not yet fully understood. As such, this work investigates the influence of topography on atmospheric blocking in terms of dynamics, spatial frequency, duration and displacement. Using an idealized GCM, an aquaplanet integration, and integrations with topography are analyzed. Block-centered composites show midlatitude aquaplanet blocks exhibit similar wave activity flux behavior to those observed in reality, whereas high-latitude blocks do not. The addition of topography significantly increases blocking and determines distinct regions where blocks are most likely to occur. These regions are found near high-pressure anomalies in the stationary waves and near storm track exit regions. Focusing on block duration, blocks originating near topography are found to last longer than those that are formed without or far from topography but have qualitatively similar evolutions in terms of nearby geopotential height anomalies and wave activity fluxes in composites. Integrations with two mountains have greater amounts of blocking compared to the single mountain case, however, the longitudinal spacing between the mountains is important for how much blocking occurs. Comparison between integrations with longitudinally long and short ocean basins show that more blocking occurs when storm track exits spatially overlap with high-pressure maxima in stationary waves. These results have real-world implications, as they help explain the differences in blocking between the Northern and Southern Hemisphere, and the differences between the Pacific and Atlantic regions in the Northern Hemisphere.


2019 ◽  
Vol 32 (14) ◽  
pp. 4193-4213 ◽  
Author(s):  
Dillon Elsbury ◽  
Yannick Peings ◽  
David Saint-Martin ◽  
Hervé Douville ◽  
Gudrun Magnusdottir

AbstractThe interdecadal Pacific oscillation (hereafter termed IPV, using “variability” in lieu of “oscillation”) and the Atlantic multidecadal oscillation (hereafter AMV, similar to IPV) are regulators of global mean temperature, large-scale atmospheric circulation, regional temperature and precipitation, and related extreme events. Despite a growing recognition of their importance, the combined influence of these modes of low-frequency sea surface temperature (SST) variability remains elusive given the short instrumental record and the difficulty of coupled climate models to simulate them satisfactorily. In this study, idealized simulations with two atmospheric global climate models (AGCMs) are used to show a partial cancellation of the North Pacific atmospheric response to positive IPV (i.e., deeper Aleutian low) by the concurrent positive phase of the AMV. This effect arises from a modulation of the interbasin Walker circulation that weakens deep convection in the western Pacific and the associated Rossby wave train into the northern extratropics. The weaker Aleutian low response is associated with less upward wave activity flux in the North Pacific; however, the associated stratospheric jet weakening is similar to when the +IPV alone forces the vortex, as additional upward wave activity flux over Siberia makes up the difference. While comparable warming of the polar stratosphere is found when the positive AMV is included with the positive IPV, the downward propagation of the stratospheric response is significantly reduced, which has implications for the associated surface temperature extremes. The robust anticorrelation between the positive IPV and positive AMV signals over the North Pacific and their lack of additivity highlight the need to consider the IPV–AMV interplay for anticipating decadal changes in mean climate and extreme events in the Northern Hemisphere.


2019 ◽  
Vol 124 (12) ◽  
pp. 6120-6142
Author(s):  
Yayoi Harada ◽  
Kaoru Sato ◽  
Takenari Kinoshita ◽  
Ryosuke Yasui ◽  
Toshihiko Hirooka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document