Subseasonal Predictions of Regional Summer Monsoon Rainfall over Tropical Asian Oceans and Land

2015 ◽  
Vol 28 (24) ◽  
pp. 9583-9605 ◽  
Author(s):  
Xiangwen Liu ◽  
Song Yang ◽  
Jianglong Li ◽  
Weihua Jie ◽  
Liang Huang ◽  
...  

Abstract Subseasonal predictions of the regional summer rainfall over several tropical Asian ocean and land domains are examined using hindcasts by the NCEP CFSv2. Higher actual and potential forecast skill are found over oceans than over land. The forecast for Arabian Sea (AS) rainfall is most skillful, while that for Indo-China (ICP) rainfall is most unskillful. The rainfall–surface temperature (ST) relationship over AS is characterized by strong and fast ST forcing but a weak and slow ST response, while the relationships over the Bay of Bengal, the South China Sea (SCS), and the India subcontinent (IP) show weak and slow ST forcing, but apparently strong and rapid ST response. Land–air interactions are often less noticeable over ICP and southern China (SC) than over IP. The CFSv2 forecasts reasonably reproduce these observed features, but the local rainfall–ST relationships often suffer from different degrees of unrealistic estimation. Also, the observed local rainfall is often related to the circulation over limited regions, which gradually become more extensive in forecasts as lead time increases. The prominent interannual differences in forecast skill of regional rainfall are sometimes associated with apparent disparities in forecasts of local rainfall–ST relationships. Besides, interannual variations of boreal summer intraseasonal oscillation, featured by obvious changes in frequency and amplitude of certain phases, significantly modulate the forecasts of rainfall over certain regions, especially the SCS and SC. It is further discussed that the regional characteristics of rainfall and model’s deficiencies in capturing the influences of local and large-scale features are responsible for the regional discrepancies of actual predictability of rainfall.

2021 ◽  
Author(s):  
Stella Jes Varghese ◽  
Kavirajan Rajendran ◽  
Sajani Surendran ◽  
Arindam Chakraborty

<p>Indian summer monsoon seasonal reforecasts by CFSv2, initiated from January (4-month lead time, L4) through May (0-month lead time, L0) initial conditions (ICs), are analysed to investigate causes for the highest Indian summer monsoon rainfall (ISMR) forecast skill of CFSv2 with February (3-month lead time, L3) ICs. Although theory suggests forecast skill should degrade with increase in lead-time, CFSv2 shows highest skill with L3, due to its forecasting of ISMR excess of 1983 which other ICs failed to forecast. In contrast to observation, in CFSv2, ISMR extremes are largely decided by sea surface temperature (SST) variation over central Pacific (NINO3.4) associated with El Niño-Southern Oscillation (ENSO), where ISMR excess (deficit) is associated with La Niña (El Niño) or cooling (warming) over NINO3.4. In 1983, CFSv2 with L3 ICs forecasted strong La Niña during summer, which resulted in 1983 ISMR excess. In contrast, in observation, near normal SSTs prevailed over NINO3.4 and ISMR excess was due to variation of convection over equatorial Indian Ocean, which CFSv2 fails to capture with all ICs. CFSv2 reforecasts with late-April/early-May ICs are found to have highest deterministic ISMR forecast skill, if 1983 is excluded and Indian monsoon seasonal biases are also reduced. During the transitional ENSO in Boreal summer of 1983, faster and intense cooling of NINO3.4 SSTs in L3, could be due to larger dynamical drift with longer lead time of forecasting, compared to L0. Boreal summer ENSO forecast skill is also found to be lowest for L3 which gradually decreases from June to September. Rainfall occurrence with strong cold bias over NINO3.4, is because of the existence of stronger ocean-atmosphere coupling in CFSv2, but with a shift of the SST-rainfall relationship pattern to slightly colder SSTs than the observed. Our analysis suggests the need for a systematic approach to minimize bias in SST boundary forcing in CFSv2, to achieve improved ISMR forecasts.</p>


2014 ◽  
Vol 15 (3) ◽  
pp. 1011-1027 ◽  
Author(s):  
Sharon E. Nicholson

Abstract The predictability of each of the three rainy seasons affecting the Horn of Africa is examined using multiple linear regression and cross validation. In contrast to most other empirical forecast models, atmospheric dynamics are emphasized. Two geographical sectors are considered: the summer rainfall region with a single rainfall peak in the boreal summer and an equatorial rainfall region with rainy seasons in both the boreal spring and the boreal autumn. These two seasons are termed the “long rains” and “short rains,” respectively, in much of East Africa. Excellent predictability is noted 5 months in advance for both regions during the boreal autumn season and 2 months in advance for the summer season in the summer rainfall region. There is also excellent predictability for the short rains of the equatorial region 2 months in advance. Two notable findings are that atmospheric variables generally provide higher forecast skill than surface variables, such as sea surface temperatures and sea level pressure, and that ENSO and the Indian Ocean dipole provide less forecast skill than atmospheric variables associated with them. As in other studies, the results show that the spring predictability barrier limits the lead time for the forecasting of spring and summer rainfall.


Author(s):  
Michael B. Natoli ◽  
Eric D. Maloney

AbstractThe impact of quasi-biweekly variability in the monsoon southwesterly winds on the precipitation diurnal cycle in the Philippines is examined using CMORPH precipitation, ERA5 reanalysis, and outgoing longwave radiation (OLR) fields. Both a case study during the 2018 Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign and a 23-year composite analysis are used to understand the effect of the QBWO on the diurnal cycle. QBWO events in the west Pacific, identified with an extended EOF index, bring increases in moisture, cloudiness, and westerly winds to the Philippines. Such events are associated with significant variability in daily mean precipitation and the diurnal cycle. It is shown that the modulation of the diurnal cycle by the QBWO is remarkably similar to that by the boreal summer intraseasonal oscillation (BSISO). The diurnal cycle reaches a maximum amplitude on the western side of the Philippines on days with average to above average moisture, sufficient insolation, and weakly offshore prevailing wind. This occurs during the transition period from suppressed to active large-scale convection for both the QBWO and BSISO.Westerly monsoon surges associated with QBWO variability generally exhibit active precipitation over the South China Sea (SCS), but a depressed diurnal cycle. These results highlight that modes of large-scale convective variability in the tropics can have a similar impact on the diurnal cycle if they influence the local scale environmental background state similarly.


2018 ◽  
Vol 31 (20) ◽  
pp. 8181-8195 ◽  
Author(s):  
Rodrigo J. Bombardi ◽  
Laurie Trenary ◽  
Kathy Pegion ◽  
Benjamin Cash ◽  
Timothy DelSole ◽  
...  

The seasonal predictability of austral summer rainfall is evaluated in a set of retrospective forecasts (hindcasts) performed as part of the Minerva and Metis projects. Both projects use the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) coupled to the Nucleus for European Modelling of the Ocean (NEMO). The Minerva runs consist of three sets of hindcasts where the spatial resolution of the model’s atmospheric component is progressively increased while keeping the spatial resolution of its oceanic component constant. In the Metis runs, the spatial resolution of both the atmospheric and oceanic components are progressively increased. We find that raw model predictions show seasonal forecast skill for rainfall over northern and southeastern South America. However, predictability is difficult to detect on a local basis, but it can be detected on a large-scale pattern basis. In addition, increasing horizontal resolution does not lead to improvements in the forecast skill of rainfall over South America. A predictable component analysis shows that only the first predictable component of austral summer precipitation has forecast skill, and the source of forecast skill is El Niño–Southern Oscillation. Seasonal prediction of precipitation remains a challenge for state-of-the-art climate models. Positive benefits of increasing model resolution might be more evident in other atmospheric fields (i.e., temperature or geopotential height) and/or temporal scales (i.e., subseasonal temporal scales).


2007 ◽  
Vol 20 (7) ◽  
pp. 1285-1304 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract This study investigates the relationship between spring and summer rainfall in East Asia and the preceding winter and spring snow cover/depth over Eurasia, using station rainfall observations, satellite-observed snow cover, satellite-derived snow water equivalent, and station observations of the number of days of snow cover and snow depth. Correlation analysis shows that snow-depth anomalies can persist from winter to spring whereas snow cover anomalies cannot in most regions of Eurasia. Locally, snow cover and snow-depth anomalies in February are not related in most regions to the north of 50°N, but those anomalies in April display consistent year-to-year variations. The results suggest that the winter snow cover cannot properly represent all the effects of snow and it is necessary to separate the winter and spring snow cover in addressing the snow–monsoon relationship. Spring snow cover in western Siberia is positively correlated with spring rainfall in southern China. The circulation anomalies associated with the western Siberian spring snow cover variations show an apparent wave pattern over the eastern Atlantic through Europe and midlatitude Asia. Spring snow cover over the Tibetan Plateau shows a moderate positive correlation with spring rainfall in southern China. Analysis shows that this correlation includes El Niño–Southern Oscillation (ENSO) effects. In contrast to the Indian summer monsoon rainfall for which the ENSO interferes with the snow effects, the Tibetan Plateau snow cover and ENSO work cooperatively to enhance spring rainfall anomalies in southern China. In comparison, ENSO has larger impacts than the snow on spring rainfall in southern China.


2022 ◽  
Author(s):  
Malay Ganai ◽  
Sahadat Sarkar ◽  
Radhika Kanase ◽  
R. Phani Murali Krishna ◽  
P Mukhopadhyay

Abstract In the present study, an investigation is made to understand the physical mechanism behind the anomalous high rainfall during August 2020 over the Indian subcontinent using both observation and GFS T1534 weather forecast model. According to India Meteorological Department (IMD), the country receives 27% excess rainfall in the month of August 2020. The excess rainfall is mainly contributed by the 5 well marked low pressure systems which formed over Bay of Bengal and moved west-northwestwards across central India up to Western Madhya Pradesh and Rajasthan. The analysis reveals that the observed anomalous rainfall is distributed over central India region extending from coastal Orissa to central part of Chhattisgarh, Madhya Pradesh and western coast of Gujarat region. It is also found that the August-2020 heavy rainfall is mainly contributed by the synoptic (2-10 days) component of the total rainfall whereas the contribution of the large-scale intraseasonal oscillation (ISO) component (10-90 days) is quite less. Although the present operational Global Forecast System (GFS) T1534 (GFS T1534) is able to predict the anomalous high rainfall with day-1 lead time, it underestimates the magnitude of the synoptic variance. Further, the large-scale dynamical and thermodynamical parameters show anomalous behaviour in terms of strong low level (850 hPa) jet, vertical velocity and associated moisture convergence in the lower level. The GFS T1534 is able to forecast the above large-scale features reasonably well even with day-5 lead time. From energetics analysis, it is found that the mean kinetic energy (MKE) is stronger for August 2020 as compared to climatological value and the strong MKE efficiently transfers the energy to the synoptic scale, and hence the synoptic eddy kinetic energy is higher. Along with that, the ISO scale kinetic energy for August 2020 is less compared to the August climatological value. GFS T1534 model has some fidelity in capturing the energy conversion processes, but it has some difficulty in capturing the magnitude with increased lead time.


2019 ◽  
Vol 77 (1) ◽  
pp. 3-30 ◽  
Author(s):  
Emily M. Riley Dellaripa ◽  
Eric D. Maloney ◽  
Benjamin A. Toms ◽  
Stephen M. Saleeby ◽  
Susan C. van den Heever

Abstract Cloud-resolving simulations are used to evaluate the importance of topography to the diurnal cycle (DC) of precipitation (DCP) over Luzon, Philippines, and surrounding ocean during the July–August 2016 boreal summer intraseasonal oscillation (BSISO) event. Composites of surface precipitation for each 30-min time increment during the day are made to determine the mean DCP. The mean DCP is computed separately for suppressed and active BSISO conditions and compared across three simulations with varying topography—flat, true, and doubled topographic height. The magnitude of the topographic height helps to dictate the timing, intensity, and location of diurnal precipitation over and near Luzon. For example, the mean DCP in the true topography run peaks 1.5 h later, is broader by 1 h, and has a 9% larger amplitude during active conditions relative to suppressed conditions. By contrast, the flat run mean DCP is earlier and narrower by 0.5 h with a 5% smaller amplitude during active conditions versus suppressed conditions. Within the suppressed or active BSISO conditions, the mean DCP peak and amplitude increase as the topographic height increases. The presence of elevated topography focuses precipitation over the coastal mountains during suppressed conditions, while dictating which side of the domain (i.e., east Luzon and the Philippine Sea vs west Luzon and the South China Sea) more precipitation occurs in during active conditions. These topographic-induced changes are discussed in terms of mechanical and thermodynamic forcing differences between the two large-scale BSISO regimes for the three runs.


2017 ◽  
Vol 30 (23) ◽  
pp. 9365-9381 ◽  
Author(s):  
Shoichi Shige ◽  
Yuki Nakano ◽  
Munehisa K. Yamamoto

Rainfall over the coastal regions of western India [Western Ghats (WG)] and Myanmar [Arakan Yoma (AY)], two regions experiencing the heaviest rainfall during the Asian summer monsoon, is examined using a Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) dataset spanning 16 years. Rainfall maxima are identified on the upslope of the WG and the coastline of AY, in contrast to the offshore locations observed in previous studies. Continuous rain with slight nocturnal and afternoon–evening maxima occurs over the upslope of the WG, while an afternoon peak over the upslope and a morning peak just off the coast are found in AY, resulting in different locations of the rainfall maxima for the WG (upslope) and AY (coastline). Large rainfall amounts with small diurnal amplitudes are observed over the WG and AY under strong environmental flow perpendicular to the coastal mountains, and vice versa. Composite analysis of the boreal summer intraseasonal oscillation (BSISO) shows that the rain anomaly over the WG slopes lags behind the northward-propagating major rainband. The cyclonic systems associated with the BSISO introduces a southwest wind anomaly behind the major rainband, enhancing the orographic rainfall over the WG, and resulting in the phase lag. This lag is not observed in the AY region where more closed cyclonic circulations occur. Diurnal variations in rainfall over the WG regions are smallest during the strongest BSISO rainfall anomaly phase.


Sign in / Sign up

Export Citation Format

Share Document