Characterizing Predictability of Precipitation Means and Extremes over the Conterminous United States, 1949–2010*

2016 ◽  
Vol 29 (7) ◽  
pp. 2621-2633 ◽  
Author(s):  
Mingkai Jiang ◽  
Benjamin S. Felzer ◽  
Dork Sahagian

Abstract The proper understanding of precipitation variability, seasonality, and predictability are important for effective environmental management. Precipitation and its associated extremes vary in magnitude and duration both spatially and temporally, making it one of the most challenging climate parameters to predict on the basis of global and regional climate models. Using information theory, an improved understanding of precipitation predictability in the conterminous United States over the period of 1949–2010 is sought based on a gridded monthly precipitation dataset. Predictability is defined as the recurrent likelihood of patterns described by the metrics of magnitude variability and seasonality. It is shown that monthly mean precipitation and duration-based dry and wet extremes are generally highly variable in the east compared to those in the west, while the reversed spatial pattern is observed for intensity-based wetness indices except along the Pacific Northwest coast. It is thus inferred that, over much of the U.S. landscape, variations of monthly mean precipitation are driven by the variations in precipitation occurrences rather than the intensity of infrequent heavy rainfall. It is further demonstrated that precipitation seasonality for means and extremes is homogeneously invariant within the United States, with the exceptions of the West Coast, Florida, and parts of the Midwest, where stronger seasonality is identified. A proportionally higher role of variability in regulating precipitation predictability is demonstrated. Seasonality surpasses variability only in parts of the West Coast. The quantified patterns of predictability for precipitation means and extremes have direct applications to those phenomena influenced by climate periodicity, such as biodiversity and ecosystem management.

2021 ◽  
Author(s):  
Kelly Mahoney ◽  
James D. Scott ◽  
Michael Alexander ◽  
Rachel McCrary ◽  
Mimi Hughes ◽  
...  

AbstractUnderstanding future precipitation changes is critical for water supply and flood risk applications in the western United States. The North American COordinated Regional Downscaling EXperiment (NA-CORDEX) matrix of global and regional climate models at multiple resolutions (~ 50-km and 25-km grid spacings) is used to evaluate mean monthly precipitation, extreme daily precipitation, and snow water equivalent (SWE) over the western United States, with a sub-regional focus on California. Results indicate significant model spread in mean monthly precipitation in several key water-sensitive areas in both historical and future projections, but suggest model agreement on increasing daily extreme precipitation magnitudes, decreasing seasonal snowpack, and a shortening of the wet season in California in particular. While the beginning and end of the California cool season are projected to dry according to most models, the core of the cool season (December, January, February) shows an overall wetter projected change pattern. Daily cool-season precipitation extremes generally increase for most models, particularly in California in the mid-winter months. Finally, a marked projected decrease in future seasonal SWE is found across all models, accompanied by earlier dates of maximum seasonal SWE, and thus a shortening of the period of snow cover as well. Results are discussed in the context of how the diverse model membership and variable resolutions offered by the NA-CORDEX ensemble can be best leveraged by stakeholders faced with future water planning challenges.


2009 ◽  
Vol 22 (12) ◽  
pp. 3211-3231 ◽  
Author(s):  
Song Yang ◽  
Yundi Jiang ◽  
Dawei Zheng ◽  
R. Wayne Higgins ◽  
Qin Zhang ◽  
...  

Abstract Variations of U.S. regional precipitation in both observations and free-run experiments with the NCEP Climate Forecast System (CFS) are investigated. The seasonality of precipitation over the continental United States and the time–frequency characteristics of precipitation over the Southwest (SW) are the focus. The differences in precipitation variation among different model resolutions are also analyzed. The spatial distribution of U.S. precipitation is characterized by high values over the East and the West Coasts, especially over the Gulf Coast and southeast states, and low values elsewhere except over the SW in summer. A large annual cycle of precipitation occurs over the SW, northern plains, and the West Coast. Overall, the CFS captures the above features reasonably well, except for the SW. However, it overestimates the precipitation over the western United States, except the SW in summer, and underestimates the precipitation over the central South, except in springtime. It also overestimates (underestimates) the precipitation seasonality over the intermountain area and Gulf Coast states (SW, West Coast, and northern Midwest). The model using T126 resolution captures the observed features more realistically than at the lower T62 resolution over a large part of the United States. The variability of observed SW precipitation is characterized by a large annual cycle, followed by a semiannual cycle, and the oscillating signals on annual, semiannual, and interannual time scales account for 41% of the total precipitation variability. However, the CFS, at both T62 and T126 resolution, fails in capturing the above feature. The variability of SW precipitation in the CFS is much less periodic. The annual oscillation of model precipitation is much weaker than that observed and it is even much weaker than the simulated semiannual oscillation. The weakly simulated annual cycle is attributed by the unrealistic precipitation simulations of all seasons, especially spring and summer. On the annual time scale, the CFS fails in simulating the relationship between the SW precipitation and the basinwide sea surface temperature (SST) and the overlying atmospheric circulation. On the semiannual time scale, the model exaggerates the response of the regional precipitation to the variations of SST and atmospheric circulation over the tropics and western Atlantic, including the Gulf of Mexico. This study also demonstrates a challenge for the next-generation CFS, at T126 resolution, to predict the variability of North American monsoon climate.


2018 ◽  
Vol 57 (8) ◽  
pp. 1883-1906 ◽  
Author(s):  
Tanya L. Spero ◽  
Christopher G. Nolte ◽  
Megan S. Mallard ◽  
Jared H. Bowden

AbstractThe use of nudging in the Weather Research and Forecasting (WRF) Model to constrain regional climate downscaling simulations is gaining in popularity because it can reduce error and improve consistency with the driving data. While some attention has been paid to whether nudging is beneficial for downscaling, very little research has been performed to determine best practices. In fact, many published papers use the default nudging configuration (which was designed for numerical weather prediction), follow practices used by colleagues, or adapt methods developed for other regional climate models. Here, a suite of 45 three-year simulations is conducted with WRF over the continental United States to systematically and comprehensively examine a variety of nudging strategies. The simulations here use a longer test period than did previously published works to better evaluate the robustness of each strategy through all four seasons, through multiple years, and across nine regions of the United States. The analysis focuses on the evaluation of 2-m temperature and precipitation, which are two of the most commonly required downscaled output fields for air quality, health, and ecosystems applications. Several specific recommendations are provided to effectively use nudging in WRF for regional climate applications. In particular, spectral nudging is preferred over analysis nudging. Spectral nudging performs best in WRF when it is used toward wind above the planetary boundary layer (through the stratosphere) and temperature and moisture only within the free troposphere. Furthermore, the nudging toward moisture is very sensitive to the nudging coefficient, and the default nudging coefficient in WRF is too high to be used effectively for moisture.


2014 ◽  
Vol 53 (6) ◽  
pp. 1578-1592 ◽  
Author(s):  
Nina S. Oakley ◽  
Kelly T. Redmond

AbstractThe northeastern Pacific Ocean is a preferential location for the formation of closed low pressure systems. These slow-moving, quasi-barotropic systems influence vertical stability and sustain a moist environment, giving them the potential to produce or affect sustained precipitation episodes along the west coast of the United States. They can remain motionless or change direction and speed more than once and thus often pose difficult forecast challenges. This study creates an objective climatological description of 500-hPa closed lows to assess their impacts on precipitation in the western United States and to explore interannual variability and preferred tracks. Geopotential height at 500 hPa from the NCEP–NCAR global reanalysis dataset was used at 6-h and 2.5° × 2.5° resolution for the period 1948–2011. Closed lows displayed seasonality and preferential durations. Time series for seasonal and annual event counts were found to exhibit strong interannual variability. Composites of the tracks of landfalling closed lows revealed preferential tracks as the features move inland over the western United States. Correlations of seasonal event totals for closed lows with ENSO indices, the Pacific decadal oscillation (PDO), and the Pacific–North American (PNA) pattern suggested an above-average number of events during the warm phase of ENSO and positive PDO and PNA phases. Precipitation at 30 U.S. Cooperative Observer stations was attributed to closed-low events, suggesting 20%–60% of annual precipitation along the West Coast may be associated with closed lows.


1995 ◽  
Vol 100 (C8) ◽  
pp. 16029 ◽  
Author(s):  
Clive E. Dorman ◽  
Clinton D. Winant

Sign in / Sign up

Export Citation Format

Share Document