scholarly journals A Maieutic Exploration of Nudging Strategies for Regional Climate Applications Using the WRF Model

2018 ◽  
Vol 57 (8) ◽  
pp. 1883-1906 ◽  
Author(s):  
Tanya L. Spero ◽  
Christopher G. Nolte ◽  
Megan S. Mallard ◽  
Jared H. Bowden

AbstractThe use of nudging in the Weather Research and Forecasting (WRF) Model to constrain regional climate downscaling simulations is gaining in popularity because it can reduce error and improve consistency with the driving data. While some attention has been paid to whether nudging is beneficial for downscaling, very little research has been performed to determine best practices. In fact, many published papers use the default nudging configuration (which was designed for numerical weather prediction), follow practices used by colleagues, or adapt methods developed for other regional climate models. Here, a suite of 45 three-year simulations is conducted with WRF over the continental United States to systematically and comprehensively examine a variety of nudging strategies. The simulations here use a longer test period than did previously published works to better evaluate the robustness of each strategy through all four seasons, through multiple years, and across nine regions of the United States. The analysis focuses on the evaluation of 2-m temperature and precipitation, which are two of the most commonly required downscaled output fields for air quality, health, and ecosystems applications. Several specific recommendations are provided to effectively use nudging in WRF for regional climate applications. In particular, spectral nudging is preferred over analysis nudging. Spectral nudging performs best in WRF when it is used toward wind above the planetary boundary layer (through the stratosphere) and temperature and moisture only within the free troposphere. Furthermore, the nudging toward moisture is very sensitive to the nudging coefficient, and the default nudging coefficient in WRF is too high to be used effectively for moisture.

2016 ◽  
Vol 29 (7) ◽  
pp. 2621-2633 ◽  
Author(s):  
Mingkai Jiang ◽  
Benjamin S. Felzer ◽  
Dork Sahagian

Abstract The proper understanding of precipitation variability, seasonality, and predictability are important for effective environmental management. Precipitation and its associated extremes vary in magnitude and duration both spatially and temporally, making it one of the most challenging climate parameters to predict on the basis of global and regional climate models. Using information theory, an improved understanding of precipitation predictability in the conterminous United States over the period of 1949–2010 is sought based on a gridded monthly precipitation dataset. Predictability is defined as the recurrent likelihood of patterns described by the metrics of magnitude variability and seasonality. It is shown that monthly mean precipitation and duration-based dry and wet extremes are generally highly variable in the east compared to those in the west, while the reversed spatial pattern is observed for intensity-based wetness indices except along the Pacific Northwest coast. It is thus inferred that, over much of the U.S. landscape, variations of monthly mean precipitation are driven by the variations in precipitation occurrences rather than the intensity of infrequent heavy rainfall. It is further demonstrated that precipitation seasonality for means and extremes is homogeneously invariant within the United States, with the exceptions of the West Coast, Florida, and parts of the Midwest, where stronger seasonality is identified. A proportionally higher role of variability in regulating precipitation predictability is demonstrated. Seasonality surpasses variability only in parts of the West Coast. The quantified patterns of predictability for precipitation means and extremes have direct applications to those phenomena influenced by climate periodicity, such as biodiversity and ecosystem management.


2021 ◽  
Author(s):  
Kelly Mahoney ◽  
James D. Scott ◽  
Michael Alexander ◽  
Rachel McCrary ◽  
Mimi Hughes ◽  
...  

AbstractUnderstanding future precipitation changes is critical for water supply and flood risk applications in the western United States. The North American COordinated Regional Downscaling EXperiment (NA-CORDEX) matrix of global and regional climate models at multiple resolutions (~ 50-km and 25-km grid spacings) is used to evaluate mean monthly precipitation, extreme daily precipitation, and snow water equivalent (SWE) over the western United States, with a sub-regional focus on California. Results indicate significant model spread in mean monthly precipitation in several key water-sensitive areas in both historical and future projections, but suggest model agreement on increasing daily extreme precipitation magnitudes, decreasing seasonal snowpack, and a shortening of the wet season in California in particular. While the beginning and end of the California cool season are projected to dry according to most models, the core of the cool season (December, January, February) shows an overall wetter projected change pattern. Daily cool-season precipitation extremes generally increase for most models, particularly in California in the mid-winter months. Finally, a marked projected decrease in future seasonal SWE is found across all models, accompanied by earlier dates of maximum seasonal SWE, and thus a shortening of the period of snow cover as well. Results are discussed in the context of how the diverse model membership and variable resolutions offered by the NA-CORDEX ensemble can be best leveraged by stakeholders faced with future water planning challenges.


2021 ◽  
Author(s):  
Brandi Gamelin ◽  
Jiali Wang ◽  
V. Rao Kotamarthi

<p>Flash droughts are the rapid intensification of drought conditions generally associated with increased temperatures and decreased precipitation on short time scales.  Consequently, flash droughts are responsible for reduced soil moisture which contributes to diminished agricultural yields and lower groundwater levels. Drought management, especially flash drought in the United States is vital to address the human and economic impact of crop loss, diminished water resources and increased wildfire risk. In previous research, climate change scenarios show increased growing season (i.e. frost-free days) and drying in soil moisture over most of the United States by 2100. Understanding projected flash drought is important to assess regional variability, frequency and intensity of flash droughts under future climate change scenarios. Data for this work was produced with the Weather Research and Forecasting (WRF) model. Initial and boundary conditions for the model were supplied by CCSM4, GFDL-ESM2G, and HadGEM2-ES and based on the 8.5 Representative Concentration Pathway (RCP8.5). The WRF model was downscaled to a 12 km spatial resolution for three climate time frames: 1995-2004 (Historical), 2045-2054 (Mid), and 2085-2094 (Late).  A key characteristic of flash drought is the rapid onset and intensification of dry conditions. For this, we identify onset with vapor pressure deficit during each time frame. Known flash drought cases during the Historical run are identified and compared to flash droughts in the Mid and Late 21<sup>st</sup> century.</p>


2021 ◽  
pp. 1-56

This paper describes the downscaling of an ensemble of twelve GCMs using the WRF model at 12-km grid spacing over the period 1970-2099, examining the mesoscale impacts of global warming as well as the uncertainties in its mesoscale expression. The RCP 8.5 emissions scenario was used to drive both global and regional climate models. The regional climate modeling system reduced bias and improved realism for a historical period, in contrast to substantial errors for the GCM simulations driven by lack of resolution. The regional climate ensemble indicated several mesoscale responses to global warming that were not apparent in the global model simulations, such as enhanced continental interior warming during both winter and summer as well as increasing winter precipitation trends over the windward slopes of regional terrain, with declining trends to the lee of major barriers. During summer there is general drying, except to the east of the Cascades. April 1 snowpack declines are large over the lower to middle slopes of regional terrain, with small snowpack increases over the lower elevations of the interior. Snow-albedo feedbacks are very different between GCM and RCM projections, with the GCM’s producing large, unphysical areas of snowpack loss and enhanced warming. Daily average winds change little under global warming, but maximum easterly winds decline modestly, driven by a preferential sea level pressure decline over the continental interior. Although temperatures warm continuously over the domain after approximately 2010, with slight acceleration over time, occurrences of temperature extremes increase rapidly during the second half of the 21st century.


2013 ◽  
Vol 52 (11) ◽  
pp. 2410-2417 ◽  
Author(s):  
Lifeng Luo ◽  
Ying Tang ◽  
Shiyuan Zhong ◽  
Xindi Bian ◽  
Warren E. Heilman

AbstractWildfires that occurred over the western United States during August 2012 were fewer in number but larger in size when compared with all other Augusts in the twenty-first century. This unique characteristic, along with the tremendous property damage and potential loss of life that occur with large wildfires with erratic behavior, raised the question of whether future climate will favor rapid wildfire growth so that similar wildfire activity may become more frequent as climate changes. This study addresses this question by examining differences in the climatological distribution of the Haines index (HI) between the current and projected future climate over the western United States. The HI, ranging from 2 to 6, was designed to characterize dry, unstable air in the lower atmosphere that may contribute to erratic or extreme fire behavior. A shift in HI distribution from low values (2 and 3) to higher values (5 and 6) would indicate an increased risk for rapid wildfire growth and spread. Distributions of Haines index are calculated from simulations of current (1971–2000) and future (2041–70) climate using multiple regional climate models in the North American Regional Climate Change Assessment Program. Despite some differences among the projections, the simulations indicate that there may be not only more days but also more consecutive days with HI ≥ 5 during August in the future. This result suggests that future atmospheric environments will be more conducive to erratic wildfires in the mountainous regions of the western United States.


2015 ◽  
Vol 12 (3) ◽  
pp. 2657-2706 ◽  
Author(s):  
T. Olsson ◽  
J. Jakkila ◽  
N. Veijalainen ◽  
L. Backman ◽  
J. Kaurola ◽  
...  

Abstract. Assessment of climate change impacts on climate and hydrology on catchment scale requires reliable information about the average values and climate fluctuations of the past, present and future. Regional Climate Models (RCMs) used in impact studies often produce biased time series of meteorological variables. In this study bias correction of RCM temperature and precipitation for Finland is carried out using different versions of distribution based scaling (DBS) method. The DBS adjusted RCM data is used as input of a hydrological model to simulate changes in discharges in four study catchments in different parts of Finland. The annual mean discharges and seasonal variation simulated with the DBS adjusted temperature and precipitation data are sufficiently close to observed discharges in the control period (1961–2000) and produce more realistic projections for mean annual and seasonal changes in discharges than the uncorrected RCM data. Furthermore, with most scenarios the DBS method used preserves the temperature and precipitation trends of the uncorrected RCM data during 1961–2100. However, if the biases in the mean or the SD of the uncorrected temperatures are large, significant biases after DBS adjustment may remain or temperature trends may change, increasing the uncertainty of climate change projections. The DBS method influences especially the projected seasonal changes in discharges and the use of uncorrected data can produce unrealistic seasonal discharges and changes. The projected changes in annual mean discharges are moderate or small, but seasonal distribution of discharges will change significantly.


2017 ◽  
Vol 30 (14) ◽  
pp. 5151-5165 ◽  
Author(s):  
Else J. M. van den Besselaar ◽  
Gerard van der Schrier ◽  
Richard C. Cornes ◽  
Aris Suwondo Iqbal ◽  
Albert M. G. Klein Tank

This study introduces a new daily high-resolution land-only observational gridded dataset, called SA-OBS, for precipitation and minimum, mean, and maximum temperature covering Southeast Asia. This dataset improves upon existing observational products in terms of the number of contributing stations, in the use of an interpolation technique appropriate for daily climate observations, and in making estimates of the uncertainty of the gridded data. The dataset is delivered on a 0.25° × 0.25° and a 0.5° × 0.5° regular latitude–longitude grid for the period 1981–2014. The dataset aims to provide best estimates of grid square averages rather than point values to enable direct comparisons with regional climate models. Next to the best estimates, daily uncertainties are quantified. The underlying daily station time series are collected in cooperation between meteorological services in the region: the Southeast Asian Climate Assessment and Dataset (SACA&D). Comparisons are made with station observations and other gridded station or satellite-based datasets (APHRODITE, CMORPH, TRMM). The comparisons show that vast differences exist in the average daily precipitation, the number of rainy days, and the average precipitation on a wet day between these datasets. SA-OBS closely resembles the station observations in terms of dry/wet frequency, the timing of precipitation events, and the reproduction of extreme precipitation. New versions of SA-OBS will be released when the station network in SACA&D has grown further.


2011 ◽  
Vol 139 (4) ◽  
pp. 1292-1304 ◽  
Author(s):  
Piet Termonia ◽  
Daan Degrauwe ◽  
Rafiq Hamdi

Most regional numerical models in the atmospheric sciences use temporally interpolated data provided by other low-resolution models, either for a gridpoint coupling at their lateral boundaries or for a spectral nudging of the large scales in the entire domain. In some cases, such as fast-propagating storms, these interpolations can seriously corrupt the meteorological fields. This article shows how to use an operational high-pass filter of the surface pressure field to detect and to localize a propagating storm, and to use this information to locally reinject the available uncorrupted storm in the coupled model. This is achieved by applying a technique of gridpoint nudging in a subarea of the domain, limited to a compact region around the eye of the depression. As an application it is shown that this restores the strength of the storm, while leaving the model state in the rest of the domain quasi intact. It is then discussed how this can improve numerical weather prediction and regional climate models.


Sign in / Sign up

Export Citation Format

Share Document