scholarly journals Dynamic Feedback of Aerosol Effects on the East Asian Summer Monsoon

2016 ◽  
Vol 29 (17) ◽  
pp. 6137-6149 ◽  
Author(s):  
Jen-Ping Chen ◽  
I-Jen Chen ◽  
I-Chun Tsai

Abstract The influence of present-day anthropogenic aerosols on the summer monsoon over the East Asia region was simulated using the Community Earth System Model coupled with a slab ocean model. The simulations revealed significant radiative forcing from anthropogenic aerosols and associated changes in clouds over East Asia and the northwestern Pacific; however, their spatial patterns differed from the exhibited surface temperature and precipitation responses. Two major dynamic feedback mechanisms were identified to explain such discrepancies. The wind–evaporation–sea surface temperature (WES) feedback, triggered by an initial cooling over the midlatitude sea surface, induced an equatorward expansion of ocean cooling through strengthened trade winds. The sea surface cooling excited a meridional wave pattern similar to the Pacific–Japan teleconnection pattern. Although the aerosol effect generally caused weakening in summer monsoon strength and regional precipitation over East Asia, precipitation increases were seen over the locations of the midlatitude mei-yu front and around the tropics. These precipitation increases are primarily associated with the WES feedback and teleconnection patterns. The aerosol effect also reached the upper troposphere, causing an equatorward shift of the jet stream over East Asia and the northwestern Pacific, indicating a much broader scale of teleconnection.

2014 ◽  
Vol 27 (9) ◽  
pp. 3348-3362 ◽  
Author(s):  
Lu Dong ◽  
Tianjun Zhou

Abstract The Indian Ocean exhibits a robust basinwide sea surface temperature (SST) warming during the twentieth century that has affected the hydrological cycle, atmospheric circulation, and global climate change. The competing roles of greenhouse gases (GHGs) and anthropogenic aerosols (AAs) with regard to the Indian Ocean warming are investigated by using 17 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The increasing GHGs are considered to be one reason for the warming. Here model evidence is provided that the emission of AAs has slowed down the warming rate. With AAs, the warming trend has been slowed down by 0.34 K century−1. However, the cooling effect is weakened when only the direct aerosol effect is considered. GHGs and AAs have competed with each other in forming the basinwide warming pattern as well as the equatorial east–west dipole warming pattern. Both the basinwide warming effect of GHGs and the cooling effect of AAs, mainly through indirect aerosol effect, are established through atmospheric processes via radiative and turbulent fluxes. The positive contributions of surface latent heat flux from atmosphere and surface longwave radiation due to GHGs forcing dominate the basinwide warming, while the reductions of surface shortwave radiation, surface longwave radiation, and latent heat flux from atmosphere associated with AAs induce the basinwide cooling. The positive Indian Ocean dipole warming pattern is seen in association with the surface easterly wind anomaly during 1870–2005 along the equator, which is produced by the increase of GHGs but weakened by AAs via direct aerosol effects.


Author(s):  
Youtong Zheng ◽  
Haipeng Zhang ◽  
Daniel Rosenfeld ◽  
Seoung-Soo Lee ◽  
Tianning Su ◽  
...  

AbstractWe explore the decoupling physics of a stratocumulus-topped boundary layer (STBL) moving over cooler water, a situation mimicking the warm air advection (WADV). We simulate an initially well-mixed STBL over a doubly periodic domain with the sea surface temperature decreasing linearly over time using the System for Atmospheric Modeling large-eddy model. Due to the surface cooling, the STBL becomes increasingly stably stratified, manifested as a near-surface temperature inversion topped by a well-mixed cloud-containing layer. Unlike the stably stratified STBL in cold air advection (CADV) that is characterized by cumulus coupling, the stratocumulus deck in the WADV is unambiguously decoupled from the sea surface, manifested as weakly negative buoyancy flux throughout the sub-cloud layer. Without the influxes of buoyancy from the surface, the convective circulation in the well-mixed cloud-containing layer is driven by cloud-top radiative cooling. In such a regime, the downdrafts propel the circulation, in contrast to that in CADV regime for which the cumulus updrafts play a more determinant role. Such a contrast in convection regime explains the difference in many aspects of the STBLs including the entrainment rate, cloud homogeneity, vertical exchanges of heat and moisture, and lifetime of the stratocumulus deck, with the last being subject to a more thorough investigation in part 2. Finally, we investigate under what conditions a secondary stratus near the surface (or fog) can form in the WADV. We found that weaker subsidence favors the formation of fog whereas a more rapid surface cooling rate doesn’t.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Dhrubajyoti Samanta ◽  
Saji N. Hameed ◽  
Dachao Jin ◽  
Vishnu Thilakan ◽  
Malay Ganai ◽  
...  

2015 ◽  
Vol 26 (3) ◽  
pp. 331 ◽  
Author(s):  
Hyeonyeong Kwak ◽  
Yang-Ki Cho ◽  
Gwang-Ho Seo ◽  
Yong-Jin Tak ◽  
Hyo-Seok Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document