scholarly journals Processes Governing Water Vapor Isotope Composition in the Indo-Pacific Region: Convection and Water Vapor Transport

2016 ◽  
Vol 29 (23) ◽  
pp. 8535-8546 ◽  
Author(s):  
Zhongyin Cai ◽  
Lide Tian

Abstract In an effort to understand the mechanisms controlling water vapor isotope composition in the Indo-Pacific region, encompassing southeastern Asia, this study investigates the spatial and interannual patterns in summer [June–September (JJAS)] water vapor isotopologues retrieved from the Tropospheric Emission Spectrometer (TES), especially those patterns associated with convection and water vapor transport. Both precipitation and water vapor isotope values exhibit a V-shaped longitudinal pattern in their spatial variations, reflecting the gradual rainout and increase in convective intensity along water vapor transport routes. On the temporal scale, compared with the 2006–10 JJAS mean conditions, TES water vapor δD over the eastern Indian Ocean and southeastern Asia (R_W120; 10°S–30°N, 80°–120°E) is higher in the 2009 JJAS El Niño event when convective activity is reduced and lower in the 2010 JJAS La Niña event when convective activity is enhanced. This is consistent with the direct response of water vapor δD to deep convection. In contrast, TES water vapor δD over the western Pacific (R_WP; 10°S–30°N, 120°–140°E) is higher in the La Niña year than in the El Niño year, although convective activity in R_WP varies in the same manner as in R_W120. A comparison of water vapor δD values with convection and water vapor transport suggests that the westward transport of water vapor–isotopic anomalies and changes in the flux of water vapor transported from the central to the western Pacific lead to such an opposite response in the R_WP. These findings help interpret what causes the interannual variations recorded by Indo-Pacific water isotopologues.

2021 ◽  
Vol 9 ◽  
Author(s):  
Yuxing Zeng ◽  
Chao Huang ◽  
Yihao Tang ◽  
Jiadong Peng

Floods in the middle reaches of the Yangtze River threaten thousands of million people, causing casualties and economic loss. Yet, the prediction of floods in this region is still challenging. To better understand the floods in this region, we investigate the interdecadal-interannual rainfall variation of the flood season (April–September) in Hunan province. The relationship between the rainfall and the Pacific decadal oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), and El Niño-Southern Oscillation (ENSO) are also analyzed. The results show that the precipitation in the flood seasons shows an interdecadal oscillation with a period of about 20 years, which is caused by the joint effect of the PDO and AMO. When the PDO and AMO are in the same phase, the corresponding flood season is characterized by more precipitation, and conversely, it is less precipitation. Further analyses show that in the year after El Niño, when the PDO and AMO are both in the positive phase, it is favorable for the west Pacific subtropical high (WPSH) to be stronger and more southward than normal. Such circulation anomaly is conducive to the water vapor transport to the southern China, and as a result there is more precipitation in Hunan. When the PDO and AMO are both in the negative phase, the WPSH is weaker than normal, but the India-Burma trough is obviously stronger, which is also favorable for the southwesterly water vapor transport to the southern China. However, in the next year of the La Niña year, regardless of the phase combination of the PDO and AMO, the southern coast of China are controlled by a negative geopotential height anomaly and the WPSH retreats to the sea, which is not conducive to the northward transport of water vapor, and the precipitation in Hunan is less than normal. But if only the cold SST background in the previous stage is considered (without reaching the standard of a La Niña event),is more precipitation in most of the Hunan Province. Therefore, at the interannual scale, the PDO and AMO also have a modulating effect on the precipitation signal. However, the interannual-scale ENSO signal has a greater influence on the precipitation in Hunan flood seasons. Our results will give implications for the predications of floods in Hunan.


2013 ◽  
Vol 56 (3) ◽  
Author(s):  
Wayan Suparta ◽  
Ahmad Iskandar ◽  
Mandeep Singh Jit Singh ◽  
Mohd. Alauddin Mohd. Ali ◽  
Baharudin Yatim ◽  
...  

<p>We analyzed the variability of global positioning system (GPS) water vapor during the 2011 La Niña events over the western Pacific Ocean. The precipitable water vapor (PWV) derived from the UMSK (Malaysia) GPS station was investigated and compared with four other selected GPS stations: NTUS (Singapore), PIMO (Philippines), BAKO (Indonesia) and TOW2 (Australia). Analysis of the correlation between PWV and the sea-surface temperature anomaly (SSTa) on a weekly basis for the three La Niña cases of January–February–March, August–September–October, and October–November–December was used as an indicator of the influence of the El Niño Southern Oscillation. A good relationship between GPS PWV and SSTa for the Niño 4 region, with correlation coefficients between -0.91 and -0.94, was observed for the August–September–October and October–November–December cases. During the 2011 La Niña events, the water vapor was seen to increase to about 8.39 mm for the October–November–December case, with decreases of about 4.20 mm for the remaining months, compared to the mean 2011 value. This implies that during these events, the precipitation in the western Pacific is increased, due to stronger easterly trade winds blowing along the eastern Pacific Ocean than along the western Pacific, and a mass of warm water moving westwards, thereby increasing the evaporation.</p>


2013 ◽  
Vol 40 (20) ◽  
pp. 5473-5479 ◽  
Author(s):  
Michelle M. Gierach ◽  
Monique Messié ◽  
Tong Lee ◽  
Kristopher B. Karnauskas ◽  
Marie-Hélène Radenac

2002 ◽  
Vol 15 (5) ◽  
pp. 512-521 ◽  
Author(s):  
V. Brahmananda Rao ◽  
Srinivasa R. Chapa ◽  
J. P. R. Fernandez ◽  
Sergio H. Franchito

2014 ◽  
Vol 27 (23) ◽  
pp. 8778-8792 ◽  
Author(s):  
Xiuzhen Li ◽  
Wen Zhou ◽  
Deliang Chen ◽  
Chongyin Li ◽  
Jie Song

Abstract The water vapor transport and moisture budget over eastern China remotely forced by the cold-tongue (CT) and warm-pool (WP) El Niño show striking differences throughout their lifetime. The water vapor transport response is weak in the developing summer but strong in the remaining phases of CT El Niño, whereas the opposite occurs during WP El Niño. WP El Niño causes a moisture deficit over the Yangtze River valley (YZ) in the developing summer and over southeastern China (SE) in the developing fall, whereas CT El Niño induces a moisture surplus first over SE during the developing fall with the influential area expanding in the decaying spring and shifting northward in the decaying summer. It is the divergence of meridional water vapor transport that dominates the total water vapor divergence anomaly, with the divergence of zonal transport showing an opposite pattern with smaller magnitude. Investigation of the vertical profile of moisture budget shows a great baroclinicity, with the strongest abnormal moisture budget occurring in different levels. The moisture transport via the southern boundary plays a crucial role in the regional moisture budget anomalies and is located near the surface over SE, in the lower troposphere over the YZ, and at the lower-middle troposphere over the eastern part of northern China. The enhanced moisture surplus near the surface forced by WP El Niño over SE in the mature winter and decaying spring is offset by a moisture deficit within the lower-middle troposphere due to a diverse response circulation at different vertical levels.


2021 ◽  
pp. 1-53
Author(s):  
Jong-Hoon Jeong ◽  
Jiwen Fan ◽  
Cameron R. Homeyer

AbstractFollowing on our study of hail for the Southern Great Plains (SGP), we investigated the spatial and temporal hail trends and variabilities for the Northern Great Plains (NGP) and the contributing factors for summers (June–August) focusing on the period of 2004–2016 using two independent hail datasets. Analysis for an extended period (1994–2016) with the hail reports was also conducted to more reliably investigate the contributing factors. Both severe hail (1″ < diameter ≤ 2″) and significant severe hail (SSH; diameter > 2″) were examined and similar results were obtained. The occurrence of hail over the NGP demonstrated a large interannual variability, with a positive slope overall. Spatially, the increase is mainly located in the western part of Nebraska, South Dakota, and North Dakota. We find the three major dynamical factors that most likely contribute to the hail interannual variability in the NGP are the El Niño-Southern Oscillation (ENSO), North Atlantic subtropical high (NASH), and low-level jet (LLJ). With a thermodynamical variable integrated water vapor transport that is strongly controlled by LLJ, the four factors can explain 78% of the interannual variability in the number of SSH reports. Hail occurrences in the La Niña years are higher than the El Niño years since the jet stream is stronger and NASH extends further into the southeastern United States, thereby strengthening the LLJ and in turn water vapor transport. Interestingly, the important factors impacting hail interannual variability over the NGP are quite different from those for the SGP, except for ENSO.


2016 ◽  
Vol 29 (6) ◽  
pp. 2077-2094 ◽  
Author(s):  
Mei Zhao ◽  
Harry H. Hendon ◽  
Yonghong Yin ◽  
Oscar Alves

Abstract Interannual variations of upper-ocean salinity in the tropical Pacific and relationships with ENSO are investigated using the Bureau of Meteorology (Australia) POAMA Ensemble Ocean Data Assimilation System (PEODAS) reanalyses. Empirical orthogonal function (EOF) analysis reveals the systematic evolution of salinity and temperature during ENSO. EOF1 and EOF2 of both temperature and salinity capture the mature phase of El Niño and the discharge and recharge phase, respectively. Typical El Niño and La Niña evolution captured by the leading pair of EOFs depicts eastward or westward migration of the eastern edge of the warm/fresh pool in the western Pacific. Increased or decreased freshness in the western Pacific mixed layer occurs in the recharge/discharge phase. EOF3 captures extreme El Niño, when the strong positive temperature anomaly extends to the South American coast and the fresh pool detaches from the western Pacific and shifts into the central Pacific. Large loadings on EOF3 occurred only during 1982/83 and 1997/98, which suggests that eastern Pacific El Niño is actually the exception, whereas moderate central Pacific El Niño and La Niña are more typical. The eastward expansion of the warm/fresh pool during El Niño is also associated with a continuous eastward displacement of the barrier layer, indicating an active role of the barrier layer not just at the onset of an event. The barrier layer and fresh pool shift much farther eastward during strong El Niño, which could contribute to the eastward shift of strong events. The prior enhancement of the barrier layer in the western Pacific is also more concentrated and stronger, which might portend development of extreme El Niño.


2006 ◽  
Vol 19 (9) ◽  
pp. 1784-1801 ◽  
Author(s):  
Jong-Seong Kug ◽  
In-Sik Kang

Abstract A feedback process of the Indian Ocean SST on ENSO is investigated by using observed data and atmospheric GCM. It is suggested that warming in the Indian Ocean produces an easterly wind stress anomaly over Indonesia and the western edge of the Pacific during the mature phase of El Niño. The anomalous easterly wind in the western Pacific during El Niño helps a rapid termination of El Niño and a fast transition to La Niña by generating upwelling Kelvin waves. Thus, warming in the Indian Ocean, which is a part of the El Niño signal, operates as a negative feedback mechanism to ENSO. This Indian Ocean feedback appears to operate mostly for relatively strong El Niños and results in a La Niña one year after the mature phase of the El Niño. This 1-yr period of phase transition implies a possible role of Indian Ocean–ENSO coupling in the biennial tendency of the ENSO. Atmospheric GCM experiments show that Indian Ocean SST forcing is mostly responsible for the easterly wind anomalies in the western Pacific.


Climate ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 57
Author(s):  
Yusuf Jati Wijaya ◽  
Yukiharu Hisaki

The North Equatorial Countercurrent (NECC) is an eastward zonal current closely related to an El Niño Southern Oscillation (ENSO) event. This paper investigated the variations of NECC in the Western Pacific Ocean over 25 years (1993–2017) using satellite data provided by the Copernicus Marine Environment Monitoring Service (CMEMS) and the Remote Sensing System (RSS). The first mode of empirical orthogonal function (EOF) analysis showed that the NECC strengthened or weakened in each El Niño (La Niña) event during the developing or mature phase, respectively. We also found that the NECC shifting was strongly coincidental with an ENSO event. During the developing phase of an El Niño (La Niña) event, the NECC shifted southward (northward), and afterward, when it entered the mature phase, the NECC tended to shift slightly northward (southward). Moreover, the NECC strength was found to have undergone a weakening during the 2008–2017 period.


2016 ◽  
Vol 113 (37) ◽  
pp. 10245-10250 ◽  
Author(s):  
Sulian Thual ◽  
Andrew J. Majda ◽  
Nan Chen ◽  
Samuel N. Stechmann

Atmospheric wind bursts in the tropics play a key role in the dynamics of the El Niño Southern Oscillation (ENSO). A simple modeling framework is proposed that summarizes this relationship and captures major features of the observational record while remaining physically consistent and amenable to detailed analysis. Within this simple framework, wind burst activity evolves according to a stochastic two-state Markov switching–diffusion process that depends on the strength of the western Pacific warm pool, and is coupled to simple ocean–atmosphere processes that are otherwise deterministic, stable, and linear. A simple model with this parameterization and no additional nonlinearities reproduces a realistic ENSO cycle with intermittent El Niño and La Niña events of varying intensity and strength as well as realistic buildup and shutdown of wind burst activity in the western Pacific. The wind burst activity has a direct causal effect on the ENSO variability: in particular, it intermittently triggers regular El Niño or La Niña events, super El Niño events, or no events at all, which enables the model to capture observed ENSO statistics such as the probability density function and power spectrum of eastern Pacific sea surface temperatures. The present framework provides further theoretical and practical insight on the relationship between wind burst activity and the ENSO.


Sign in / Sign up

Export Citation Format

Share Document