scholarly journals Understanding Decreases in Land Relative Humidity with Global Warming: Conceptual Model and GCM Simulations

2016 ◽  
Vol 29 (24) ◽  
pp. 9045-9061 ◽  
Author(s):  
Michael P. Byrne ◽  
Paul A. O’Gorman

Abstract Climate models simulate a strong land–ocean contrast in the response of near-surface relative humidity to global warming; relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving atmospheric moisture transport between the land and ocean and surface evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to simulations with idealized and full-complexity (CMIP5) general circulation models, and it is found to capture many of the features of the simulated changes in land humidity. The simplest version of the box model gives equal fractional increases in specific humidity over land and ocean. This relationship implies a decrease in land relative humidity given the greater warming over land than ocean and modest changes in ocean relative humidity, consistent with a mechanism proposed previously. When evapotranspiration is included, it is found to be of secondary importance compared to ocean moisture transport for the increase in land specific humidity, but it plays an important role for the decrease in land relative humidity. For the case of a moisture forcing over land, such as from stomatal closure, the response of land relative humidity is strongly amplified by the induced change in land surface–air temperature, and this amplification is quantified using a theory for the link between land and ocean temperatures.

2017 ◽  
Vol 30 (12) ◽  
pp. 4527-4545 ◽  
Author(s):  
F. Hugo Lambert ◽  
Angus J. Ferraro ◽  
Robin Chadwick

A compositing scheme that predicts changes in tropical precipitation under climate change from changes in near-surface relative humidity (RH) and temperature is presented. As shown by earlier work, regions of high tropical precipitation in general circulation models (GCMs) are associated with high near-surface RH and temperature. Under climate change, it is found that high precipitation continues to be associated with the highest surface RH and temperatures in most CMIP5 GCMs, meaning that it is the “rank” of a given GCM grid box with respect to others that determines how much precipitation falls rather than the absolute value of surface temperature or RH change, consistent with the weak temperature gradient approximation. Further, it is demonstrated that the majority of CMIP5 GCMs are close to a threshold near which reductions in land RH produce large reductions in the RH ranking of some land regions, causing reductions in precipitation over land, particularly South America, and compensating increases over ocean. Recent work on predicting future changes in specific humidity allows the prediction of the qualitative sense of precipitation change in some GCMs when land surface humidity changes are unknown. However, the magnitudes of predicted changes are too small. Further study, perhaps into the role of radiative and land–atmosphere feedbacks, is necessary.


2018 ◽  
Vol 115 (19) ◽  
pp. 4863-4868 ◽  
Author(s):  
Michael P. Byrne ◽  
Paul A. O’Gorman

In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land–ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.


2020 ◽  
Author(s):  
Tuomas Naakka ◽  
Tiina Nygård ◽  
Timo Vihma

<p>Atmospheric humidity profiles control occurrence of clouds, which in turn has a large impact on radiative fluxes in the Antarctic. In addition, humidity profiles strongly interact with surface moisture fluxes, which are an important component in the water cycle. Despite their important role in the climate system, specific and relative humidity profiles in the Antarctic have not so far been comprehensively studied. Here, we address the vertical structure of tropospheric specific and relative humidity in the area south of 50°S and focus on interactions of this structure with horizontal and vertical moisture transport and surface fluxes of sensible and latent heat. The study is based on ERA5 reanalysis data from 15-years period, 2004 - 2018. </p><p>We show that in the Antarctic, both moisture transport and surface fluxes shape the vertical structure of specific and relative humidity, but their relative contributions and effects vary considerably between regions. Therefore, we examined humidity profiles dividing the study area into five sub-regions: 1) open sea, 2) seasonal sea-ice area, 3) slopes of East Antarctica, 4) East Antarctica high plateau, and 5) West Antarctica. Expect west Antarctica, within each region the vertical structure of air moisture is relatively homogenous. Results indicate that each of these regions has own key processes (evaporation, condensation, vertical and horizontal moisture fluxes) controlling the vertical structure of relative and specific humidity.</p><p>The open ocean is a source area for atmospheric moisture. Over the open sea, a thin unsaturated well-mixed layer is seen near the surface, which is caused by year-around upward moisture flux (evaporation) and upward sensible heat flux. Above this layer, there is a layer of high relative humidity and frequently occurring cloud cover. Over sea ice, seasonal variability is large. During most of the year, moisture surface fluxes over sea ice are small, near-surface relative humidity is high, and specific humidity inversions are frequent. In summer, however, evaporation over sea ice increases, near-surface relative humidity is lower, and humidity inversions are uncommon.</p><p>The high plateau is the area where absolutely dry air masses are formed, as a consequence of near-surface condensation and downward moisture transport. There, the near-surface air is often saturated with respect to ice, and strong but thin surface-based specific humidity inversions are present during most of the year. On the slopes, adiabatic warming, due to katabatic winds, causes decrease of relative humidity when the air mass is advected downwards from the plateau. This leads to relatively high surface evaporation and makes surface-based specific humidity inversions rarer.</p><p>This study comprehensively describes the vertical structure of relative and specific humidity in the Antarctic, and increases understanding on how this vertical structure interacts with moisture transport and surface fluxes. The results can further contribute to understanding of processes related to cloud formation and water cycle in the high southern latitudes.</p>


2014 ◽  
Vol 27 (13) ◽  
pp. 4970-4995 ◽  
Author(s):  
Charlotte A. DeMott ◽  
Cristiana Stan ◽  
David A. Randall ◽  
Mark D. Branson

The interaction of ocean coupling and model physics in the simulation of the intraseasonal oscillation (ISO) is explored with three general circulation models: the Community Atmospheric Model, versions 3 and 4 (CAM3 and CAM4), and the superparameterized CAM3 (SPCAM3). Each is integrated coupled to an ocean model, and as an atmosphere-only model using sea surface temperatures (SSTs) from the coupled SPCAM3, which simulates a realistic ISO. For each model, the ISO is best simulated with coupling. For each SST boundary condition, the ISO is best simulated in SPCAM3. Near-surface vertical gradients of specific humidity, [Formula: see text] (temperature, [Formula: see text]), explain ~20% (50%) of tropical Indian Ocean latent (sensible) heat flux variance, and somewhat less of west Pacific variance. In turn, local SST anomalies explain ~5% (25%) of [Formula: see text] [Formula: see text] variance in coupled simulations, and less in uncoupled simulations. Ergo, latent and sensible heat fluxes are strongly controlled by wind speed fluctuations, which are largest in the coupled simulations, and represent a remote response to coupling. The moisture budget reveals that wind variability in coupled simulations increases east-of-convection midtropospheric moistening via horizontal moisture advection, which influences the direction and duration of ISO propagation. These results motivate a new conceptual model for the role of ocean feedbacks on the ISO. Indian Ocean surface fluxes help developing convection attain a magnitude capable of inducing the circulation anomalies necessary for downstream moistening and propagation. The “processing” of surface fluxes by model physics strongly influences the moistening details, leading to model-dependent responses to coupling.


2014 ◽  
Vol 11 (5) ◽  
pp. 6715-6754 ◽  
Author(s):  
W. Zhang ◽  
C. Jansson ◽  
P. A. Miller ◽  
B. Smith ◽  
P. Samuelsson

Abstract. Continued warming of the Arctic will likely accelerate terrestrial carbon (C) cycling by increasing both uptake and release of C. There are still large uncertainties in modelling Arctic terrestrial ecosystems as a source or sink of C. Most modelling studies assessing or projecting the future fate of C exchange with the atmosphere are based an either stand-alone process-based models or coupled climate–C cycle general circulation models, in either case disregarding biogeophysical feedbacks of land surface changes to the atmosphere. To understand how biogeophysical feedbacks will impact on both climate and C budget over Arctic terrestrial ecosystems, we apply the regional Earth system model RCA-GUESS over the CORDEX-Arctic domain. The model is forced with lateral boundary conditions from an GCMs CMIP5 climate projection under the RCP 8.5 scenario. We perform two simulations with or without interactive vegetation dynamics respectively to assess the impacts of biogeophysical feedbacks. Both simulations indicate that Arctic terrestrial ecosystems will continue to sequester C with an increased uptake rate until 2060s–2070s, after which the C budget will return to a weak C sink as increased soil respiration and biomass burning outpaces increased net primary productivity. The additional C sinks arising from biogeophysical feedbacks are considerable, around 8.5 Gt C, accounting for 22% of the total C sinks, of which 83.5% are located in areas of Arctic tundra. Two opposing feedback mechanisms, mediated by albedo and evapotranspiration changes respectively, contribute to this response. Albedo feedback dominates over winter and spring season, amplifying the near-surface warming by up to 1.35 K in spring, while evapotranspiration feedback dominates over summer exerting the evaporative cooling by up to 0.81 K. Such feedbacks stimulate vegetation growth with an earlier onset of growing-season, leading to compositional changes in woody plants and vegetation redistribution.


2014 ◽  
Vol 11 (19) ◽  
pp. 5503-5519 ◽  
Author(s):  
W. Zhang ◽  
C. Jansson ◽  
P. A. Miller ◽  
B. Smith ◽  
P. Samuelsson

Abstract. Continued warming of the Arctic will likely accelerate terrestrial carbon (C) cycling by increasing both uptake and release of C. Yet, there are still large uncertainties in modelling Arctic terrestrial ecosystems as a source or sink of C. Most modelling studies assessing or projecting the future fate of C exchange with the atmosphere are based on either stand-alone process-based models or coupled climate–C cycle general circulation models, and often disregard biogeophysical feedbacks of land-surface changes to the atmosphere. To understand how biogeophysical feedbacks might impact on both climate and the C budget in Arctic terrestrial ecosystems, we apply the regional Earth system model RCA-GUESS over the CORDEX-Arctic domain. The model is forced with lateral boundary conditions from an EC-Earth CMIP5 climate projection under the representative concentration pathway (RCP) 8.5 scenario. We perform two simulations, with or without interactive vegetation dynamics respectively, to assess the impacts of biogeophysical feedbacks. Both simulations indicate that Arctic terrestrial ecosystems will continue to sequester C with an increased uptake rate until the 2060–2070s, after which the C budget will return to a weak C sink as increased soil respiration and biomass burning outpaces increased net primary productivity. The additional C sinks arising from biogeophysical feedbacks are approximately 8.5 Gt C, accounting for 22% of the total C sinks, of which 83.5% are located in areas of extant Arctic tundra. Two opposing feedback mechanisms, mediated by albedo and evapotranspiration changes respectively, contribute to this response. The albedo feedback dominates in the winter and spring seasons, amplifying the near-surface warming by up to 1.35 °C in spring, while the evapotranspiration feedback dominates in the summer months, and leads to a cooling of up to 0.81 °C. Such feedbacks stimulate vegetation growth due to an earlier onset of the growing season, leading to compositional changes in woody plants and vegetation redistribution.


2018 ◽  
Vol 11 (2) ◽  
pp. 541-560 ◽  
Author(s):  
Przemyslaw Zelazowski ◽  
Chris Huntingford ◽  
Lina M. Mercado ◽  
Nathalie Schaller

Abstract. Global circulation models (GCMs) are the best tool to understand climate change, as they attempt to represent all the important Earth system processes, including anthropogenic perturbation through fossil fuel burning. However, GCMs are computationally very expensive, which limits the number of simulations that can be made. Pattern scaling is an emulation technique that takes advantage of the fact that local and seasonal changes in surface climate are often approximately linear in the rate of warming over land and across the globe. This allows interpolation away from a limited number of available GCM simulations, to assess alternative future emissions scenarios. In this paper, we present a climate pattern-scaling set consisting of spatial climate change patterns along with parameters for an energy-balance model that calculates the amount of global warming. The set, available for download, is derived from 22 GCMs of the WCRP CMIP3 database, setting the basis for similar eventual pattern development for the CMIP5 and forthcoming CMIP6 ensemble. Critically, it extends the use of the IMOGEN (Integrated Model Of Global Effects of climatic aNomalies) framework to enable scanning across full uncertainty in GCMs for impact studies. Across models, the presented climate patterns represent consistent global mean trends, with a maximum of 4 (out of 22) GCMs exhibiting the opposite sign to the global trend per variable (relative humidity). The described new climate regimes are generally warmer, wetter (but with less snowfall), cloudier and windier, and have decreased relative humidity. Overall, when averaging individual performance across all variables, and without considering co-variance, the patterns explain one-third of regional change in decadal averages (mean percentage variance explained, PVE, 34.25±5.21), but the signal in some models exhibits much more linearity (e.g. MIROC3.2(hires): 41.53) than in others (GISS_ER: 22.67). The two most often considered variables, near-surface temperature and precipitation, have a PVE of 85.44±4.37 and 14.98±4.61, respectively. We also provide an example assessment of a terrestrial impact (changes in mean runoff) and compare projections by the IMOGEN system, which has one land surface model, against direct GCM outputs, which all have alternative representations of land functioning. The latter is noted as an additional source of uncertainty. Finally, current and potential future applications of the IMOGEN version 2.0 modelling system in the areas of ecosystem modelling and climate change impact assessment are presented and discussed.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1594 ◽  
Author(s):  
Beatriz Garcia ◽  
Renata Libonati ◽  
Ana Nunes

The Amazon basin has experienced severe drought events for centuries, mainly associated with climate variability connected to tropical North Atlantic and Pacific sea surface temperature anomalous warming. Recently, these events are becoming more frequent, more intense and widespread. Because of the Amazon droughts environmental and socioeconomic impacts, there is an increased demand for understanding the characteristics of such extreme events in the region. In that regard, regional models instead of the general circulation models provide a promising strategy to generate more detailed climate information of extreme events, seeking better representation of physical processes. Due to uneven spatial distribution and gaps found in station data in tropical South America, and the need of more refined climate assessment in those regions, satellite-enhanced regional downscaling for applied studies (SRDAS) is used in the reconstruction of South American hydroclimate, with hourly to monthly outputs from January 1998. Accordingly, this research focuses on the analyses of recent extreme drought events in the years of 2005 and 2010 in the Amazon Basin, using the SRDAS monthly means of near-surface temperature and relative humidity, precipitation and vertically integrated soil moisture fields. Results from this analysis corroborate spatial and temporal patterns found in previous studies on extreme drought events in the region, displaying the distinctive features of the 2005 and 2010 drought events.


Sign in / Sign up

Export Citation Format

Share Document