Humidity profiles and their interactions with moisture transport and surface fluxes in the Antarctic

Author(s):  
Tuomas Naakka ◽  
Tiina Nygård ◽  
Timo Vihma

<p>Atmospheric humidity profiles control occurrence of clouds, which in turn has a large impact on radiative fluxes in the Antarctic. In addition, humidity profiles strongly interact with surface moisture fluxes, which are an important component in the water cycle. Despite their important role in the climate system, specific and relative humidity profiles in the Antarctic have not so far been comprehensively studied. Here, we address the vertical structure of tropospheric specific and relative humidity in the area south of 50°S and focus on interactions of this structure with horizontal and vertical moisture transport and surface fluxes of sensible and latent heat. The study is based on ERA5 reanalysis data from 15-years period, 2004 - 2018. </p><p>We show that in the Antarctic, both moisture transport and surface fluxes shape the vertical structure of specific and relative humidity, but their relative contributions and effects vary considerably between regions. Therefore, we examined humidity profiles dividing the study area into five sub-regions: 1) open sea, 2) seasonal sea-ice area, 3) slopes of East Antarctica, 4) East Antarctica high plateau, and 5) West Antarctica. Expect west Antarctica, within each region the vertical structure of air moisture is relatively homogenous. Results indicate that each of these regions has own key processes (evaporation, condensation, vertical and horizontal moisture fluxes) controlling the vertical structure of relative and specific humidity.</p><p>The open ocean is a source area for atmospheric moisture. Over the open sea, a thin unsaturated well-mixed layer is seen near the surface, which is caused by year-around upward moisture flux (evaporation) and upward sensible heat flux. Above this layer, there is a layer of high relative humidity and frequently occurring cloud cover. Over sea ice, seasonal variability is large. During most of the year, moisture surface fluxes over sea ice are small, near-surface relative humidity is high, and specific humidity inversions are frequent. In summer, however, evaporation over sea ice increases, near-surface relative humidity is lower, and humidity inversions are uncommon.</p><p>The high plateau is the area where absolutely dry air masses are formed, as a consequence of near-surface condensation and downward moisture transport. There, the near-surface air is often saturated with respect to ice, and strong but thin surface-based specific humidity inversions are present during most of the year. On the slopes, adiabatic warming, due to katabatic winds, causes decrease of relative humidity when the air mass is advected downwards from the plateau. This leads to relatively high surface evaporation and makes surface-based specific humidity inversions rarer.</p><p>This study comprehensively describes the vertical structure of relative and specific humidity in the Antarctic, and increases understanding on how this vertical structure interacts with moisture transport and surface fluxes. The results can further contribute to understanding of processes related to cloud formation and water cycle in the high southern latitudes.</p>

2016 ◽  
Vol 29 (24) ◽  
pp. 9045-9061 ◽  
Author(s):  
Michael P. Byrne ◽  
Paul A. O’Gorman

Abstract Climate models simulate a strong land–ocean contrast in the response of near-surface relative humidity to global warming; relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving atmospheric moisture transport between the land and ocean and surface evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to simulations with idealized and full-complexity (CMIP5) general circulation models, and it is found to capture many of the features of the simulated changes in land humidity. The simplest version of the box model gives equal fractional increases in specific humidity over land and ocean. This relationship implies a decrease in land relative humidity given the greater warming over land than ocean and modest changes in ocean relative humidity, consistent with a mechanism proposed previously. When evapotranspiration is included, it is found to be of secondary importance compared to ocean moisture transport for the increase in land specific humidity, but it plays an important role for the decrease in land relative humidity. For the case of a moisture forcing over land, such as from stomatal closure, the response of land relative humidity is strongly amplified by the induced change in land surface–air temperature, and this amplification is quantified using a theory for the link between land and ocean temperatures.


2021 ◽  
Vol 34 (11) ◽  
pp. 4463-4480
Author(s):  
Tuomas Naakka ◽  
Tiina Nygård ◽  
Timo Vihma

AbstractAtmospheric moisture is a key component in the water cycle and radiative transfer. In this study, a comprehensive picture of air moisture climatology and related physical processes is presented for the first time for the circumpolar area south of 50°S. The results are based on the most modern global reanalysis, ERA5, which manages reasonably well to close the Antarctic water budget. We show that over the ocean transient cyclones have the dominant role in determining moisture conditions, whereas over the continent the moisture conditions are largely affected by the mean circulation. Over the open sea, moisture transport from lower latitudes is an equally important source of moisture compared to the local evaporation, but practically all precipitating moisture over the plateau is provided by the horizontal transport. Over the ocean and continental slopes, southward moisture transport brings warm and moist air masses from lower latitudes, notably increasing atmospheric water vapor and cloud water, and simultaneously decreasing local evaporation over the open sea. On the Antarctic plateau, radiative cooling leads to high relative humidity and causes condensation of moisture especially near the surface, causing a nearly permanent specific humidity inversion layer. As a consequence, dry air masses with extremely low specific humidity are formed. These dry air masses are transported downward from the plateau by katabatic winds, experiencing adiabatic warming. This leads to a decrease in relative humidity and to a downward-directed sensible heat flux, which enable efficient surface evaporation on the coastal slopes and farther over coastal polynyas and leads.


2017 ◽  
Vol 56 (8) ◽  
pp. 2239-2258 ◽  
Author(s):  
Jonathan D. Wille ◽  
David H. Bromwich ◽  
John J. Cassano ◽  
Melissa A. Nigro ◽  
Marian E. Mateling ◽  
...  

AbstractAccurately predicting moisture and stability in the Antarctic planetary boundary layer (PBL) is essential for low-cloud forecasts, especially when Antarctic forecasters often use relative humidity as a proxy for cloud cover. These forecasters typically rely on the Antarctic Mesoscale Prediction System (AMPS) Polar Weather Research and Forecasting (Polar WRF) Model for high-resolution forecasts. To complement the PBL observations from the 30-m Alexander Tall Tower! (ATT) on the Ross Ice Shelf as discussed in a recent paper by Wille and coworkers, a field campaign was conducted at the ATT site from 13 to 26 January 2014 using Small Unmanned Meteorological Observer (SUMO) aerial systems to collect PBL data. The 3-km-resolution AMPS forecast output is combined with the global European Centre for Medium-Range Weather Forecasts interim reanalysis (ERAI), SUMO flights, and ATT data to describe atmospheric conditions on the Ross Ice Shelf. The SUMO comparison showed that AMPS had an average 2–3 m s−1 high wind speed bias from the near surface to 600 m, which led to excessive mechanical mixing and reduced stability in the PBL. As discussed in previous Polar WRF studies, the Mellor–Yamada–Janjić PBL scheme is likely responsible for the high wind speed bias. The SUMO comparison also showed a near-surface 10–15-percentage-point dry relative humidity bias in AMPS that increased to a 25–30-percentage-point deficit from 200 to 400 m above the surface. A large dry bias at these critical heights for aircraft operations implies poor AMPS low-cloud forecasts. The ERAI showed that the katabatic flow from the Transantarctic Mountains is unrealistically dry in AMPS.


2019 ◽  
Author(s):  
Étienne Vignon ◽  
Olivier Traullé ◽  
Alexis Berne

Abstract. Eight years of high-resolution radiosonde data at nine Antarctic stations are analysed to provide the first large scale characterization of the fine scale vertical structure of the low troposphere up to 3 km of altitude over the coastal margins of East Antarctica. Radiosonde data show a large spatial variability of wind, temperature and humidity profiles, with different features between stations in katabatic regions (e.g., Dumont d'Urville and Mawson stations), stations over two ice shelves (Neumayer and Halley stations) and regions with complex orography (e.g., Mc Murdo). At Dumont d'Urville, Mawson and Davis stations, the yearly median wind speed profiles exhibit a clear low-level katabatic jet. During precipitation events, the low-level flow generally remains of continental origin and its speed is even reinforced due to the increase in the continent- ocean pressure gradient. Meanwhile, the relative humidity profiles show a dry low troposphere, suggesting the occurence of low-level sublimation of precipitation in katabatic regions but such a phenomenon does not appreciably occur over the ice-shelves near Halley and Neumayer. Although ERA-Interim and ERA5 reanalyses assimilate radiosoundings at most stations considered here, substantial – and sometimes large – low-level wind and humidity biases are revealed but ERA5 shows overall better performances. A free simulation with the regional model Polar WRF (at a 35-km resolution) over the entire continent shows too strong and too shallow near-surface jets in katabatic regions especially in winter. This may be a consequence of an understimated coastal cold air bump and associated sea-continent pressure gradient force due to the coarse 35 km resolution of the Polar WRF simulation. Beyond documenting the vertical structure of the low troposphere over coastal East-Antarctica, this study gives insights into the reliability and accuracy of two major reanalysis products in this region on the Earth and it raises the difficulty of modeling the low-level flow over the margins of the ice sheet with a state-of-the-art climate model.


2018 ◽  
Vol 115 (19) ◽  
pp. 4863-4868 ◽  
Author(s):  
Michael P. Byrne ◽  
Paul A. O’Gorman

In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land–ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.


2019 ◽  
Vol 32 (20) ◽  
pp. 6899-6915 ◽  
Author(s):  
A. Gossart ◽  
S. Helsen ◽  
J. T. M. Lenaerts ◽  
S. Vanden Broucke ◽  
N. P. M. van Lipzig ◽  
...  

Abstract In this study, we evaluate output of near-surface atmospheric variables over the Antarctic Ice Sheet from four reanalyses: the new European Centre for Medium-Range Weather Forecasts ERA-5 and its predecessor ERA-Interim, the Climate Forecast System Reanalysis (CFSR), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The near-surface temperature, wind speed, and relative humidity are compared with datasets of in situ observations, together with an assessment of the simulated surface mass balance (approximated by precipitation minus evaporation). No reanalysis clearly stands out as the best performing for all areas, seasons, and variables, and each of the reanalyses displays different biases. CFSR strongly overestimates the relative humidity during all seasons whereas ERA-5 and MERRA-2 (and, to a lesser extent, ERA-Interim) strongly underestimate relative humidity during winter. ERA-5 captures the seasonal cycle of near-surface temperature best and shows the smallest bias relative to the observations. The other reanalyses show a general temperature underestimation during the winter months in the Antarctic interior and overestimation in the coastal areas. All reanalyses underestimate the mean near-surface winds in the interior (except MERRA-2) and along the coast during the entire year. The winds at the Antarctic Peninsula are overestimated by all reanalyses except MERRA-2. All models are able to capture snowfall patterns related to atmospheric rivers, with varying accuracy. Accumulation is best represented by ERA-5, although it underestimates observed surface mass balance and there is some variability in the accumulation over the different elevation classes, for all reanalyses.


2020 ◽  
Author(s):  
Veronique Michot ◽  
Helene Brogniez ◽  
Mathieu Vrac ◽  
Soulivanh Thao ◽  
Helene Chepfer ◽  
...  

<p>The multi-scale interactions at the origin of the links between clouds and water vapour are essential for the Earth's energy balance and thus the climate, from local to global. Knowledge of the distribution and variability of water vapour in the troposphere is indeed a major issue for the understanding of the atmospheric water cycle. At present, these interactions are poorly known at regional and local scales, i.e. within 100km, and are therefore poorly represented in numerical climate models. This is why we have sought to predict cloud scale relative humidity profiles in the intertropical zone, using a non-parametric statistical downscaling method called quantile regression forest. The procedure includes co-located data from 3 satellites: CALIPSO lidar and CloudSat radar, used as predictors and providing cloud properties at 90m and 1.4km horizontal resolution respectively; SAPHIR data used as a predictor and providing relative humidity at an initial horizontal resolution of 10km. Quantile regression forests were used to predict relative humidity profiles at the CALIPSO and CloudSat scales. These predictions are able to reproduce a relative humidity variability consistent with the cloud profiles and are confirmed by values of coefficients of determination greater than 0.7, relative to observed relative humidity, and Continuous Rank Probability Skill Score between 0 and 1, relative to climatology. Lidar measurements from the NARVAL 1&2 campaigns and radiosondes from the EUREC4A campaigns were also used to compare Relative Humidity profiles at the SAPHIR scale and at the scale of forest regression prediction by quantile regression.</p>


2017 ◽  
Author(s):  
Francisco Fernandoy ◽  
Dieter Tetzner ◽  
Hanno Meyer ◽  
Guisella Gacitúa ◽  
Kirstin Hoffmann ◽  
...  

Abstract. The Antarctic Peninsula is one of the most challenging regions of Antarctica from a climatological perspective, owing to the recent atmospheric and oceanic warming. The steep topography and a lack of long–term and in situ meteorological observations complicate extrapolation of existing climate models to the sub-regional scale. Here, we present new evidence from the northern Antarctic Peninsula to demonstrate how stable water isotopes of firn cores and recent precipitation samples can reveal climatic processes related to nearby oceanic and atmospheric conditions. A noticeable effect of the sea ice cover on local temperatures and atmospheric modes, in particular the Southern Annular Mode (SAM), is demonstrated. In years with large sea ice extension in winter (negative SAM anomaly), an inversion layer in the lower troposphere develops at the coastal zone. Therefore, an isotope–temperature relationship valid for all seasons cannot be concluded. The δ–T relationship rather depends on seasonal variability of oceanic conditions. Transitional seasons (autumn and spring) are both stable seasons with an isotope–temperature gradient of +0.69 ‰ °C−1. The firn stable isotope composition reveals that the near–surface temperature at the Antarctic Peninsula shows a decreasing trend (−0.33 °C y−1) between 2008 and 2014. Moreover, the deuterium excess (dexcess) has been demonstrated to be a reliable indicator of seasonal oceanic conditions, and therefore suitable to improve a firn age model based on seasonal dexcess variability. The annual accumulation rate in this region is highly variable, ranging between 1060 kg m−2 y−1 and 2470 kg m−2 y−1 from 2008 to 2014. The combination of isotopic and meteorological data is key for reconstructing recent climatic conditions with a high temporal resolution in polar regions where no direct observation exists


2018 ◽  
Vol 12 (3) ◽  
pp. 1069-1090 ◽  
Author(s):  
Francisco Fernandoy ◽  
Dieter Tetzner ◽  
Hanno Meyer ◽  
Guisella Gacitúa ◽  
Kirstin Hoffmann ◽  
...  

Abstract. Due to recent atmospheric and oceanic warming, the Antarctic Peninsula is one of the most challenging regions of Antarctica to understand in terms of both local- and regional-scale climate signals. Steep topography and a lack of long-term and in situ meteorological observations complicate the extrapolation of existing climate models to the sub-regional scale. Therefore, new techniques must be developed to better understand processes operating in the region. Isotope signals are traditionally related mainly to atmospheric conditions, but a detailed analysis of individual components can give new insight into oceanic and atmospheric processes. This paper aims to use new isotopic records collected from snow and firn cores in conjunction with existing meteorological and oceanic datasets to determine changes at the climatic scale in the northern extent of the Antarctic Peninsula. In particular, a discernible effect of sea ice cover on local temperatures and the expression of climatic modes, especially the Southern Annular Mode (SAM), is demonstrated. In years with a large sea ice extension in winter (negative SAM anomaly), an inversion layer in the lower troposphere develops at the coastal zone. Therefore, an isotope–temperature relationship (δ–T) valid for all periods cannot be obtained, and instead the δ–T depends on the seasonal variability of oceanic conditions. Comparatively, transitional seasons (autumn and spring) have a consistent isotope–temperature gradient of +0.69 ‰ °C−1. As shown by firn core analysis, the near-surface temperature in the northern-most portion of the Antarctic Peninsula shows a decreasing trend (−0.33 °C year−1) between 2008 and 2014. In addition, the deuterium excess (dexcess) is demonstrated to be a reliable indicator of seasonal oceanic conditions, and therefore suitable to improve a firn age model based on seasonal dexcess variability. The annual accumulation rate in this region is highly variable, ranging between 1060 and 2470 kg m−2 year−1 from 2008 to 2014. The combination of isotopic and meteorological data in areas where data exist is key to reconstruct climatic conditions with a high temporal resolution in polar regions where no direct observations exist.


2012 ◽  
Vol 69 (8) ◽  
pp. 2538-2550 ◽  
Author(s):  
Malte Rieck ◽  
Louise Nuijens ◽  
Bjorn Stevens

Abstract The mechanisms that govern the response of shallow cumulus, such as found in the trade wind regions, to a warming of the atmosphere in which large-scale atmospheric processes act to keep relative humidity constant are explored. Two robust effects are identified. First, and as is well known, the liquid water lapse rate increases with temperature and tends to increase the amount of water in clouds, making clouds more reflective of solar radiation. Second, and less well appreciated, the surface fluxes increase with the saturation specific humidity, which itself is a strong function of temperature. Using large-eddy simulations it is shown that the liquid water lapse rate acts as a negative feedback: a positive temperature increase driven by radiative forcing is reduced by the increase in cloud water and hence cloud albedo. However, this effect is more than compensated by a reduction of cloudiness associated with the deepening and relative drying of the boundary layer, driven by larger surface moisture fluxes. Because they are so robust, these effects are thought to underlie changes in the structure of the marine boundary layer as a result of global warming.


Sign in / Sign up

Export Citation Format

Share Document