scholarly journals Biogeophysical feedbacks enhance the Arctic terrestrial carbon sink in regional Earth system dynamics

2014 ◽  
Vol 11 (19) ◽  
pp. 5503-5519 ◽  
Author(s):  
W. Zhang ◽  
C. Jansson ◽  
P. A. Miller ◽  
B. Smith ◽  
P. Samuelsson

Abstract. Continued warming of the Arctic will likely accelerate terrestrial carbon (C) cycling by increasing both uptake and release of C. Yet, there are still large uncertainties in modelling Arctic terrestrial ecosystems as a source or sink of C. Most modelling studies assessing or projecting the future fate of C exchange with the atmosphere are based on either stand-alone process-based models or coupled climate–C cycle general circulation models, and often disregard biogeophysical feedbacks of land-surface changes to the atmosphere. To understand how biogeophysical feedbacks might impact on both climate and the C budget in Arctic terrestrial ecosystems, we apply the regional Earth system model RCA-GUESS over the CORDEX-Arctic domain. The model is forced with lateral boundary conditions from an EC-Earth CMIP5 climate projection under the representative concentration pathway (RCP) 8.5 scenario. We perform two simulations, with or without interactive vegetation dynamics respectively, to assess the impacts of biogeophysical feedbacks. Both simulations indicate that Arctic terrestrial ecosystems will continue to sequester C with an increased uptake rate until the 2060–2070s, after which the C budget will return to a weak C sink as increased soil respiration and biomass burning outpaces increased net primary productivity. The additional C sinks arising from biogeophysical feedbacks are approximately 8.5 Gt C, accounting for 22% of the total C sinks, of which 83.5% are located in areas of extant Arctic tundra. Two opposing feedback mechanisms, mediated by albedo and evapotranspiration changes respectively, contribute to this response. The albedo feedback dominates in the winter and spring seasons, amplifying the near-surface warming by up to 1.35 °C in spring, while the evapotranspiration feedback dominates in the summer months, and leads to a cooling of up to 0.81 °C. Such feedbacks stimulate vegetation growth due to an earlier onset of the growing season, leading to compositional changes in woody plants and vegetation redistribution.

2014 ◽  
Vol 11 (5) ◽  
pp. 6715-6754 ◽  
Author(s):  
W. Zhang ◽  
C. Jansson ◽  
P. A. Miller ◽  
B. Smith ◽  
P. Samuelsson

Abstract. Continued warming of the Arctic will likely accelerate terrestrial carbon (C) cycling by increasing both uptake and release of C. There are still large uncertainties in modelling Arctic terrestrial ecosystems as a source or sink of C. Most modelling studies assessing or projecting the future fate of C exchange with the atmosphere are based an either stand-alone process-based models or coupled climate–C cycle general circulation models, in either case disregarding biogeophysical feedbacks of land surface changes to the atmosphere. To understand how biogeophysical feedbacks will impact on both climate and C budget over Arctic terrestrial ecosystems, we apply the regional Earth system model RCA-GUESS over the CORDEX-Arctic domain. The model is forced with lateral boundary conditions from an GCMs CMIP5 climate projection under the RCP 8.5 scenario. We perform two simulations with or without interactive vegetation dynamics respectively to assess the impacts of biogeophysical feedbacks. Both simulations indicate that Arctic terrestrial ecosystems will continue to sequester C with an increased uptake rate until 2060s–2070s, after which the C budget will return to a weak C sink as increased soil respiration and biomass burning outpaces increased net primary productivity. The additional C sinks arising from biogeophysical feedbacks are considerable, around 8.5 Gt C, accounting for 22% of the total C sinks, of which 83.5% are located in areas of Arctic tundra. Two opposing feedback mechanisms, mediated by albedo and evapotranspiration changes respectively, contribute to this response. Albedo feedback dominates over winter and spring season, amplifying the near-surface warming by up to 1.35 K in spring, while evapotranspiration feedback dominates over summer exerting the evaporative cooling by up to 0.81 K. Such feedbacks stimulate vegetation growth with an earlier onset of growing-season, leading to compositional changes in woody plants and vegetation redistribution.


2021 ◽  
Author(s):  
Paolo Ruggieri ◽  
Marianna Benassi ◽  
Stefano Materia ◽  
Daniele Peano ◽  
Constantin Ardilouze ◽  
...  

<p>Seasonal climate predictions leverage on many predictable or persistent components of the Earth system that can modify the state of the atmosphere and of relant weather related variable such as temprature and precipitation. With a dominant role of the ocean, the land surface provides predictability through various mechanisms, including snow cover, with particular reference to Autumn snow cover over the Eurasian continent. The snow cover alters the energy exchange between land surface and atmosphere and induces a diabatic cooling that in turn can affect the atmosphere both locally and remotely. Lagged relationships between snow cover in Eurasia and atmospheric modes of variability in the Northern Hemisphere have been investigated and documented but are deemed to be non-stationary and climate models typically do not reproduce observed relationships with consensus. The role of Autumn Eurasian snow in recent dynamical seasonal forecasts is therefore unclear. In this study we assess the role of Eurasian snow cover in a set of 5 operational seasonal forecast system characterized by a large ensemble size and a high atmospheric and oceanic resolution. Results are compemented with a set of targeted idealised simulations with atmospheric general circulation models forced by different snow cover conditions. Forecast systems reproduce realistically regional changes of the surface energy balance associated with snow cover variability. Retrospective forecasts and idealised sensitivity experiments converge in identifying a coherent change of the circulation in the Northern Hemisphere. This is compatible with a lagged but fast feedback from the snow to the Arctic Oscillation trough a tropospheric pathway.</p>


2019 ◽  
Vol 12 (11) ◽  
pp. 4823-4873 ◽  
Author(s):  
Neil C. Swart ◽  
Jason N. S. Cole ◽  
Viatcheslav V. Kharin ◽  
Mike Lazare ◽  
John F. Scinocca ◽  
...  

Abstract. The Canadian Earth System Model version 5 (CanESM5) is a global model developed to simulate historical climate change and variability, to make centennial-scale projections of future climate, and to produce initialized seasonal and decadal predictions. This paper describes the model components and their coupling, as well as various aspects of model development, including tuning, optimization, and a reproducibility strategy. We also document the stability of the model using a long control simulation, quantify the model's ability to reproduce large-scale features of the historical climate, and evaluate the response of the model to external forcing. CanESM5 is comprised of three-dimensional atmosphere (T63 spectral resolution equivalent roughly to 2.8∘) and ocean (nominally 1∘) general circulation models, a sea-ice model, a land surface scheme, and explicit land and ocean carbon cycle models. The model features relatively coarse resolution and high throughput, which facilitates the production of large ensembles. CanESM5 has a notably higher equilibrium climate sensitivity (5.6 K) than its predecessor, CanESM2 (3.7 K), which we briefly discuss, along with simulated changes over the historical period. CanESM5 simulations contribute to the Coupled Model Intercomparison Project phase 6 (CMIP6) and will be employed for climate science and service applications in Canada.


2019 ◽  
Author(s):  
Neil C. Swart ◽  
Jason N. S. Cole ◽  
Viatcheslav V. Kharin ◽  
Mike Lazare ◽  
John F. Scinocca ◽  
...  

Abstract. The Canadian Earth System Model version 5 (CanESM5) is a global model developed to simulate historical climate change and variability, to make centennial scale projections of future climate, and to produce initialized seasonal and decadal predictions. This paper describes the model components and their coupling, as well as various aspects of model development, including tuning, optimization and a reproducibility strategy. We also document the stability of the model using a long control simulation, quantify the model's ability to reproduce large scale features of the historical climate, and evaluate the response of the model to external forcing. CanESM5 is comprised of three dimensional atmosphere (T63 spectral resolution/2.8°) and ocean (nominally 1°) general circulation models, a sea ice model, a land surface scheme, and explicit land and ocean carbon cycle models. The model features relatively coarse resolution and high throughput, which facilitates the production of large ensembles. CanESM5 has a notably higher equilibrium climate sensitivity (5.7 K) than its predecessor CanESM2 (3.8 K), which we briefly discuss, along with simulated changes over the historical period. CanESM5 simulations are contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6), and will be employed for climate science and service applications in Canada.


2016 ◽  
Vol 29 (24) ◽  
pp. 9045-9061 ◽  
Author(s):  
Michael P. Byrne ◽  
Paul A. O’Gorman

Abstract Climate models simulate a strong land–ocean contrast in the response of near-surface relative humidity to global warming; relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving atmospheric moisture transport between the land and ocean and surface evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to simulations with idealized and full-complexity (CMIP5) general circulation models, and it is found to capture many of the features of the simulated changes in land humidity. The simplest version of the box model gives equal fractional increases in specific humidity over land and ocean. This relationship implies a decrease in land relative humidity given the greater warming over land than ocean and modest changes in ocean relative humidity, consistent with a mechanism proposed previously. When evapotranspiration is included, it is found to be of secondary importance compared to ocean moisture transport for the increase in land specific humidity, but it plays an important role for the decrease in land relative humidity. For the case of a moisture forcing over land, such as from stomatal closure, the response of land relative humidity is strongly amplified by the induced change in land surface–air temperature, and this amplification is quantified using a theory for the link between land and ocean temperatures.


2007 ◽  
Vol 20 (6) ◽  
pp. 1093-1107 ◽  
Author(s):  
Muyin Wang ◽  
James E. Overland ◽  
Vladimir Kattsov ◽  
John E. Walsh ◽  
Xiangdong Zhang ◽  
...  

Abstract There were two major multiyear, Arctic-wide (60°–90°N) warm anomalies (>0.7°C) in land surface air temperature (LSAT) during the twentieth century, between 1920 and 1950 and again at the end of the century after 1979. Reproducing this decadal and longer variability in coupled general circulation models (GCMs) is a critical test for understanding processes in the Arctic climate system and increasing the confidence in the Intergovernmental Panel on Climate Change (IPCC) model projections. This study evaluated 63 realizations generated by 20 coupled GCMs made available for the IPCC Fourth Assessment for their twentieth-century climate in coupled models (20C3M) and corresponding control runs (PIcntrl). Warm anomalies in the Arctic during the last two decades are reproduced by all ensemble members, with considerable variability in amplitude among models. In contrast, only eight models generated warm anomaly amplitude of at least two-thirds of the observed midcentury warm event in at least one realization, but not its timing. The durations of the midcentury warm events in all the models are decadal, while that of the observed was interdecadal. The variance of the control runs in nine models was comparable with the variance in the observations. The random timing of midcentury warm anomalies in 20C3M simulations and the similar variance of the control runs in about half of the models suggest that the observed midcentury warm period is consistent with intrinsic climate variability. Five models were considered to compare somewhat favorably to Arctic observations in both matching the variance of the observed temperature record in their control runs and representing the decadal mean temperature anomaly amplitude in their 20C3M simulations. Seven additional models could be given further consideration. Results support selecting a subset of GCMs when making predictions for future climate by using performance criteria based on comparison with retrospective data.


2017 ◽  
Vol 30 (12) ◽  
pp. 4527-4545 ◽  
Author(s):  
F. Hugo Lambert ◽  
Angus J. Ferraro ◽  
Robin Chadwick

A compositing scheme that predicts changes in tropical precipitation under climate change from changes in near-surface relative humidity (RH) and temperature is presented. As shown by earlier work, regions of high tropical precipitation in general circulation models (GCMs) are associated with high near-surface RH and temperature. Under climate change, it is found that high precipitation continues to be associated with the highest surface RH and temperatures in most CMIP5 GCMs, meaning that it is the “rank” of a given GCM grid box with respect to others that determines how much precipitation falls rather than the absolute value of surface temperature or RH change, consistent with the weak temperature gradient approximation. Further, it is demonstrated that the majority of CMIP5 GCMs are close to a threshold near which reductions in land RH produce large reductions in the RH ranking of some land regions, causing reductions in precipitation over land, particularly South America, and compensating increases over ocean. Recent work on predicting future changes in specific humidity allows the prediction of the qualitative sense of precipitation change in some GCMs when land surface humidity changes are unknown. However, the magnitudes of predicted changes are too small. Further study, perhaps into the role of radiative and land–atmosphere feedbacks, is necessary.


2020 ◽  
Vol 20 (5) ◽  
pp. 2953-2966
Author(s):  
Eun-Hyuk Baek ◽  
Joo-Hong Kim ◽  
Sungsu Park ◽  
Baek-Min Kim ◽  
Jee-Hoon Jeong

Abstract. Many general circulation models (GCMs) have difficulty simulating Arctic clouds and climate, causing substantial inter-model spread. To address this issue, two Atmospheric Model Intercomparison Project (AMIP) simulations from the Community Atmosphere Model version 5 (CAM5) and Seoul National University (SNU) Atmosphere Model version 0 (SAM0) with a unified convection scheme (UNICON) are employed to identify an effective mechanism for improving Arctic cloud and climate simulations. Over the Arctic, SAM0 produced a larger cloud fraction and cloud liquid mass than CAM5, reducing the negative Arctic cloud biases in CAM5. The analysis of cloud water condensation rates indicates that this improvement is associated with an enhanced net condensation rate of water vapor into the liquid condensate of Arctic low-level clouds, which in turn is driven by enhanced poleward transports of heat and moisture by the mean meridional circulation and transient eddies. The reduced Arctic cloud biases lead to improved simulations of surface radiation fluxes and near-surface air temperature over the Arctic throughout the year. The association between the enhanced poleward transports of heat and moisture and increase in liquid clouds over the Arctic is also evident not only in both models, but also in the multi-model analysis. Our study demonstrates that enhanced poleward heat and moisture transport in a model can improve simulations of Arctic clouds and climate.


2021 ◽  
Author(s):  
Xinping Xu ◽  
Shengping He ◽  
Yongqi Gao ◽  
Botao Zhou ◽  
Huijun Wang

AbstractPrevious modelling and observational studies have shown discrepancies in the interannual relationship of winter surface air temperature (SAT) between Arctic and East Asia, stimulating the debate about whether Arctic change can influence midlatitude climate. This study uses two sets of coordinated experiments (EXP1 and EXP2) from six different atmospheric general circulation models. Both EXP1 and EXP2 consist of 130 ensemble members, each of which in EXP1 (EXP2) was forced by the same observed daily varying sea ice and daily varying (daily climatological) sea surface temperature (SST) for 1982–2014 but with different atmospheric initial conditions. Large spread exists among ensemble members in simulating the Arctic–East Asian SAT relationship. Only a fraction of ensemble members can reproduce the observed deep Arctic warming–cold continent pattern which extends from surface to upper troposphere, implying the important role of atmospheric internal variability. The mechanisms of deep Arctic warming and shallow Arctic warming are further distinguished. Arctic warming aloft is caused primarily by poleward moisture transport, which in conjunction with the surface warming coupled with sea ice melting constitutes the surface-amplified deep Arctic warming throughout the troposphere. These processes associated with the deep Arctic warming may be related to the forcing of remote SST when there is favorable atmospheric circulation such as Rossby wave train propagating from the North Atlantic into the Arctic.


1995 ◽  
Vol 43 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Anatoly V. Lozhkin ◽  
Patricia M. Anderson

AbstractAlluvial, fluvial, and organic deposits of the last interglaciation are exposed along numerous river terraces in northeast Siberia. Although chronological control is often poor, the paleobotanical data suggest range extensions of up to 1000 km for the primary tree species. These data also indicate that boreal communities of the last interglaciation were similar to modern ones in composition, but their distributions were displaced significantly to the north-northwest. Inferences about climate of this period suggest that mean July temperatures were warmer by 4 to 8°C, and seasonal precipitation was slightly greater. Mean January temperatures may have been severely cooler than today (up to 12°C) along the Arctic coast, but similar or slightly warmer than present in other areas. The direction and magnitude of change in July temperatures agree with Atmospheric General Circulation Models, but the 126,000-year-B.P. model results also suggest trends opposite to the paleobotanical data, with simulated cooler winter temperatures and drier conditions than present during the climatic optimum.


Sign in / Sign up

Export Citation Format

Share Document