scholarly journals Phase Changes and Seasonal Warming in Early Instrumental Temperature Records

2017 ◽  
Vol 30 (17) ◽  
pp. 6795-6821 ◽  
Author(s):  
Eric Hillebrand ◽  
Tommaso Proietti

Phase analyses of the annual cycle of monthly temperature time series that date back to the eighteenth century show trending behavior that has been difficult to interpret. Negative trends in the estimated phase have been identified with precession of Earth’s axis of rotation, but the implied later onset of seasons is at odds with recent satellite measurements and with the phenological record. Positive trends in the phase and the occurrence of trends of both signs in temperature time series from geographically nearby locations have remained mysterious. This paper shows that there is a mathematical equivalence between trends in phases and seasonally differing warming trends, in particular more intense warming in winters than in summers. Using temperature time series from 16 Northern Hemispheric locations reaching back to the eighteenth century and a statistical model that can estimate the seasonal warming trends, the authors reject the hypothesis that the timing of the seasons in these locations is jointly driven by precession.

2015 ◽  
Vol 51 (1) ◽  
pp. 198-212 ◽  
Author(s):  
Dylan J. Irvine ◽  
Roger H. Cranswick ◽  
Craig T. Simmons ◽  
Margaret A. Shanafield ◽  
Laura K. Lautz

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Malvina Silvestri ◽  
Federico Rabuffi ◽  
Massimo Musacchio ◽  
Sergio Teggi ◽  
Maria Fabrizia Buongiorno

In this work, the land surface temperature time series derived using Thermal InfraRed (TIR) satellite data offers the possibility to detect thermal anomalies by using the PCA method. This approach produces very detailed maps of thermal anomalies, both in geothermal areas and in urban areas. Tests were conducted on the following three Italian sites: Solfatara-Campi Flegrei (Naples), Parco delle Biancane (Grosseto) and Modena city.


2021 ◽  
Author(s):  
Christopher Kadow ◽  
David Hall ◽  
Uwe Ulbrich

<p>Historical temperature measurements are the basis of global climate datasets like HadCRUT4. This dataset contains many missing values, particularly for periods before the mid-twentieth century, although recent years are also incomplete. Here we demonstrate that artificial intelligence can skilfully fill these observational gaps when combined with numerical climate model data. We show that recently developed image inpainting techniques perform accurate monthly reconstructions via transfer learning using either 20CR (Twentieth-Century Reanalysis) or the CMIP5 (Coupled Model Intercomparison Project Phase 5) experiments. The resulting global annual mean temperature time series exhibit high Pearson correlation coefficients (≥0.9941) and low root mean squared errors (≤0.0547 °C) as compared with the original data. These techniques also provide advantages relative to state-of-the-art kriging interpolation and principal component analysis-based infilling. When applied to HadCRUT4, our method restores a missing spatial pattern of the documented El Niño from July 1877. With respect to the global mean temperature time series, a HadCRUT4 reconstruction by our method points to a cooler nineteenth century, a less apparent hiatus in the twenty-first century, an even warmer 2016 being the warmest year on record and a stronger global trend between 1850 and 2018 relative to previous estimates. We propose image inpainting as an approach to reconstruct missing climate information and thereby reduce uncertainties and biases in climate records.</p><p>From:</p><p>Kadow, C., Hall, D.M. & Ulbrich, U. Artificial intelligence reconstructs missing climate information. <em>Nature Geoscience</em> <strong>13, </strong>408–413 (2020). https://doi.org/10.1038/s41561-020-0582-5</p><p>The presentation will tell from the journey of changing an image AI to a climate research application.</p>


Sign in / Sign up

Export Citation Format

Share Document