scholarly journals Understanding the Time Scales of the Tropospheric Circulation Response to Abrupt CO2 Forcing in the Southern Hemisphere: Seasonality and the Role of the Stratosphere

2017 ◽  
Vol 30 (21) ◽  
pp. 8497-8515 ◽  
Author(s):  
Kevin M. Grise ◽  
Lorenzo M. Polvani

This study examines the time scales of the Southern Hemisphere (SH) tropospheric circulation response to increasing atmospheric CO2 concentrations in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). In response to an abrupt quadrupling of atmospheric CO2, the midlatitude jet stream and poleward edge of the Hadley circulation shift poleward on the time scale of the rising global-mean surface temperature during the summer and fall seasons but on a much more rapid time scale during the winter and spring seasons. The seasonally varying time scales of the SH circulation response are closely tied to the meridional temperature gradient in the upper troposphere–lower stratosphere and, in particular, to temperatures in the SH polar lower stratosphere. During summer and fall, SH polar lower-stratospheric temperatures cool on the time scale of warming global surface temperatures, as the lifting of the tropopause height with tropospheric warming is associated with cooling at lower-stratospheric levels. However, during winter and spring, SH polar lower-stratospheric temperatures cool primarily from fast time-scale radiative processes, contributing to the faster time-scale circulation response during these seasons. The poleward edge of the SH subtropical dry zone shifts poleward on the time scale of the rising global-mean surface temperature during all seasons in response to an abrupt quadrupling of atmospheric CO2. The dry zone edge initially follows the poleward shift in the Hadley cell edge but is then augmented by the action of eddy moisture fluxes in a warming climate. Consequently, with increasing atmospheric CO2 concentrations, key features of the tropospheric circulation response could emerge sooner than features more closely tied to rising global temperatures.

2014 ◽  
Vol 27 (15) ◽  
pp. 6074-6092 ◽  
Author(s):  
Kevin M. Grise ◽  
Lorenzo M. Polvani

Abstract This study quantifies cloud–radiative anomalies associated with interannual variability in the latitude of the Southern Hemisphere (SH) midlatitude eddy-driven jet, in 20 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Two distinct model types are found. In the first class of models (type I models), total cloud fraction is reduced at SH midlatitudes as the jet moves poleward, contributing to enhanced shortwave radiative warming. In the second class of models (type II models), this dynamically induced cloud radiative warming effect is largely absent. Type I and type II models have distinct deficiencies in their representation of observed Southern Ocean clouds, but comparison with two independent satellite datasets indicates that the cloud–dynamics behavior of type II models is more realistic. Because the SH midlatitude jet shifts poleward in response to CO2 forcing, the cloud–dynamics biases uncovered from interannual variability are directly relevant for climate change projections. In CMIP5 model experiments with abruptly quadrupled atmospheric CO2 concentrations, the global-mean surface temperature initially warms more in type I models, even though their equilibrium climate sensitivity is not significantly larger. In type I models, this larger initial warming is linked to the rapid adjustment of the circulation and clouds to CO2 forcing in the SH, where a nearly instantaneous poleward shift of the midlatitude jet is accompanied by a reduction in the reflection of solar radiation by clouds. In type II models, the SH jet also shifts rapidly poleward with CO2 quadrupling, but it is not accompanied by cloud radiative warming anomalies, resulting in a smaller initial global-mean surface temperature warming.


2021 ◽  
Author(s):  
Philip G. Sansom ◽  
Donald Cummins ◽  
Stefan Siegert ◽  
David B Stephenson

Abstract Quantifying the risk of global warming exceeding critical targets such as 2.0 ◦ C requires reliable projections of uncertainty as well as best estimates of Global Mean Surface Temperature (GMST). However, uncertainty bands on GMST projections are often calculated heuristically and have several potential shortcomings. In particular, the uncertainty bands shown in IPCC plume projections of GMST are based on the distribution of GMST anomalies from climate model runs and so are strongly determined by model characteristics with little influence from observations of the real-world. Physically motivated time-series approaches are proposed based on fitting energy balance models (EBMs) to climate model outputs and observations in order to constrain future projections. It is shown that EBMs fitted to one forcing scenario will not produce reliable projections when different forcing scenarios are applied. The errors in the EBM projections can be interpreted as arising due to a discrepancy in the effective forcing felt by the model. A simple time-series approach to correcting the projections is proposed based on learning the evolution of the forcing discrepancy so that it can be projected into the future. This approach gives reliable projections of GMST when tested in a perfect model setting. When applied to observations this leads to projected warming of 2.2 ◦ C (1.7 ◦ C to 2.9 ◦ C) in 2100 compared to pre-industrial conditions, 0.4 ◦ C lower than a comparable IPCC anomaly estimate. The probability of staying below the critical 2.0 ◦ C warming target in 2100 more than doubles to 0.28 compared to only 0.11 from a comparably IPCC estimate.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Darrell Kaufman ◽  
Nicholas McKay ◽  
Cody Routson ◽  
Michael Erb ◽  
Christoph Dätwyler ◽  
...  

2010 ◽  
Vol 37 (16) ◽  
pp. n/a-n/a ◽  
Author(s):  
John C. Fyfe ◽  
Nathan P. Gillett ◽  
David W. J. Thompson

2009 ◽  
Vol 22 (22) ◽  
pp. 6120-6141 ◽  
Author(s):  
David W. J. Thompson ◽  
John M. Wallace ◽  
Phil D. Jones ◽  
John J. Kennedy

Abstract Global-mean surface temperature is affected by both natural variability and anthropogenic forcing. This study is concerned with identifying and removing from global-mean temperatures the signatures of natural climate variability over the period January 1900–March 2009. A series of simple, physically based methodologies are developed and applied to isolate the climate impacts of three known sources of natural variability: the El Niño–Southern Oscillation (ENSO), variations in the advection of marine air masses over the high-latitude continents during winter, and aerosols injected into the stratosphere by explosive volcanic eruptions. After the effects of ENSO and high-latitude temperature advection are removed from the global-mean temperature record, the signatures of volcanic eruptions and changes in instrumentation become more clearly apparent. After the volcanic eruptions are subsequently filtered from the record, the residual time series reveals a nearly monotonic global warming pattern since ∼1950. The results also reveal coupling between the land and ocean areas on the interannual time scale that transcends the effects of ENSO and volcanic eruptions. Globally averaged land and ocean temperatures are most strongly correlated when ocean leads land by ∼2–3 months. These coupled fluctuations exhibit a complicated spatial signature with largest-amplitude sea surface temperature perturbations over the Atlantic Ocean.


Sign in / Sign up

Export Citation Format

Share Document