scholarly journals Rainfall Characteristics of Recurving Tropical Cyclones over the Western North Pacific

2018 ◽  
Vol 31 (2) ◽  
pp. 575-592 ◽  
Author(s):  
Difei Deng ◽  
Elizabeth A. Ritchie

A dataset of 88 recurving western North Pacific tropical cyclones from 2004 to 2015 is investigated for rainfall characteristics during their period of recurvature. The TCs are categorized into two groups based on different large-scale patterns from empirical orthogonal function analysis. Group 1 is characterized by an intense midlatitude baroclinic zone and close distance between the zone and TC, while Group 2 is characterized by a weaker midlatitude baroclinic zone and more remote distance between the zone and TC at the time of recurvature. The results show the large-scale environment has substantial impact on TC rainfall patterns. In Group 1, as the TC approaches and is embedded into the baroclinic zone, a relatively strong interaction between the TC and midlatitudes occurs, which is reflected by a rapid increase of environmental vertical wind shear and TC translation speed, the alignment of the shear vector and motion vector, and a sharp contrast of temperature and moisture. Higher rainfall and wider coverage of rainfall tends to be produced along the track after recurvature, and the rainfall pattern turns from a right-of-track (ROT) to a left-of-track (LOT) preference. Conversely, in Group 2, a relatively weak interaction between the TC and midlatitude circulation occurs, which is reflected by weaker vertical wind shear and slower TC motion, a separation of the shear vector and motion vector, and a weak gradient of temperature and moisture. The corresponding rainfall swath for Group 2 exhibits a narrower rainfall swath after recurvature. The rain pattern changes from a LOT to ROT preference.

Author(s):  
Jihong Moon ◽  
Jinyoung Park ◽  
Dong-Hyun Cha ◽  
Yumin Moon

AbstractIn this study, the characteristics of simulated tropical cyclones (TCs) over the western North Pacific by a regional model (the WRF model) are verified. We utilize 12 km horizontal grid spacing, and simulations are integrated for 5 days from model initialization. One hundred and twenty-five forecasts are divided into five clusters through the k-means clustering method. The TCs in the cluster 1 and 2 (group 1), which includes many TCs moves northward in subtropical region, generally have larger track errors than for TCs in cluster 3 and 4 (group 2). The optimal steering vector is used to examine the difference in the track forecast skill between these two groups. The bias in the steering vector between the model and analysis data is found to be more substantial for group 1 TCs than group 2 TCs. The larger steering vector difference for group 1 TCs indicates that environmental fields tend to be poorly simulated in group 1 TC cases. Furthermore, the residual terms, including the storm-scale process, asymmetric convection distribution, or beta-related effect, are also larger for group 1 TCs than group 2 TCs. Therefore, it is probable that the large track forecast error for group 1 TCs is a result of unreasonable simulations of environmental wind fields and residual processes in the midlatitudes.


2018 ◽  
Vol 31 (3) ◽  
pp. 1015-1028 ◽  
Author(s):  
Jia Liang ◽  
Liguang Wu ◽  
Guojun Gu

Abstract As one major source of forecasting errors in tropical cyclone intensity, rapid weakening of tropical cyclones [an intensity reduction of 20 kt (1 kt = 0.51 m s−1) or more over a 24-h period] over the tropical open ocean can result from the interaction between tropical cyclones and monsoon gyres. This study aims to examine rapid weakening events occurring in monsoon gyres in the tropical western North Pacific (WNP) basin during May–October 2000–14. Although less than one-third of rapid weakening events happened in the tropical WNP basin south of 25°N, more than 40% of them were associated with monsoon gyres. About 85% of rapid weakening events in monsoon gyres occurred in September and October. The rapid weakening events associated with monsoon gyres are usually observed near the center of monsoon gyres when tropical cyclone tracks make a sudden northward turn. The gyres can enlarge the outer size of tropical cyclones and tend to induce prolonged rapid weakening events with an average duration of 33.2 h. Large-scale environmental factors, including sea surface temperature changes, vertical wind shear, and midlevel environmental humidity, are not primary contributors to them, suggesting the possible effect of monsoon gyres on these rapid weakening events by modulating the tropical cyclone structure. This conclusion is conducive to improving operational forecasts of tropical cyclone intensity.


2021 ◽  
Author(s):  
Haili Wang ◽  
Chunzai Wang

Abstract Based on satellite era data after 1979, we find that the tropical cyclone (TC) variations in the Western North Pacific (WNP) can be divided into three-periods: a high-frequency period from 1979-1997 (P1), a low-frequency period from 1998-2010 (P2), and a high-frequency period from 2011-2020 (P3). Previous studies have focused on WNP TC activity during P1 and P2. Here we use observational data to study the WNP TC variation and its possible mechanisms during P3. Compared with P2, more TCs during P3 are due to the large-scale atmospheric environmental conditions of positive relative vorticity, negative vertical velocity and weak vertical wind shear. Warmer SST is found during P3, which is favorable for TC genesis. The correlation between the WNP TC frequency and SST shows a significant positive correlation around the equator and a significant negative correlation around 36°N, which is similar to the warm phase of the Pacific Decadal Oscillation (PDO). The correlation coefficient between the PDO and TC frequency is 0.71, significant at 99% confidence level. The results indicate that the increase of the WNP TC frequency during 2011-2020 is associated with the phase transition of the PDO and warmer SST. Therefore, more attention should be given to the warmer SST and PDO phase when predicting WNP TC activity.


2019 ◽  
Vol 32 (23) ◽  
pp. 8437-8445
Author(s):  
Ruifang Wang ◽  
Liguang Wu

Abstract The annual mean latitude at which tropical cyclones (TCs) reach their lifetime maximum intensity (LMI) over the western North Pacific Ocean basin has shifted northward since the early 1980s, and it is suggested that the shift is due to the northward migration of the mean TC formation location. In this study, the TC intensity is simulated with an intensity model to assess the historical records of TC intensity. During the period 1980–2015, the simulated poleward trend in the mean latitude of LMI is 0.44° (10 yr)−1, which agrees well with the one [0.48° (10 yr)−1] derived from the Joint Typhoon Warning Center (JTWC) dataset. This suggests that the observed poleward trend in the mean latitude of LMI is physically consistent with changes in the large-scale ocean–atmosphere environment and TC track. This study also demonstrates that the temporal change in the environmental parameters (sea surface temperature, outflow temperature, vertical wind shear, and ocean mixed layer depth) has little influence on the observed shift of the mean LMI latitude. The poleward migration of the mean LMI latitude is mainly due to the TC track shift, which results primarily from the change in the large-scale steering flow.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kexin Song ◽  
Li Tao ◽  
Jianyun Gao

The low-level monsoon trough over the western North Pacific (WNP) can evolve into a large cyclonic circulation, which is often termed a monsoon gyre (MG). Previous studies have revealed that tropical cyclones (TCs) embedded in MGs can experience rapid weakening (RW) and such RW might be attributed to the convective activity in the southeastern quadrant of the MG, which could induce asymmetries in a TC’s inner core structure, while the environmental factors, including the sea surface temperature (SST) and vertical wind shear (VWS), were not primary contributors to RW events. In this study, the possible role of large-scale environmental factors in association with the RW of TCs in MGs over the WNP is revisited based on the best-track TC and global reanalysis data during 2000–2018. Results indicate that TCs tend to weaken rapidly when they are embedded in the eastern semicircle of a MG, with the extreme RW events often occurring in the southeastern quadrant of a MG. However, different from previous studies, results from this study demonstrated that lower SST and strong large-scale VWS in the eastern semicircle of a MG are two major environmental factors contributing to the RW of TCs in MGs over the WNP. The different findings in this study from those in previous studies could be partly due to the different methods used to obtain the MG circulations and partly due to the environmental factors being analyzed in different quadrants of MG in this study.


2013 ◽  
Vol 70 (4) ◽  
pp. 1023-1034 ◽  
Author(s):  
Liguang Wu ◽  
Huijun Zong ◽  
Jia Liang

Abstract Large-scale monsoon gyres and the involved tropical cyclone formation over the western North Pacific have been documented in previous studies. The aim of this study is to understand how monsoon gyres affect tropical cyclone formation. An observational study is conducted on monsoon gyres during the period 2000–10, with a focus on their structures and the associated tropical cyclone formation. A total of 37 monsoon gyres are identified in May–October during 2000–10, among which 31 monsoon gyres are accompanied with the formation of 42 tropical cyclones, accounting for 19.8% of the total tropical cyclone formation. Monsoon gyres are generally located on the poleward side of the composited monsoon trough with a peak occurrence in August–October. Extending about 1000 km outward from the center at lower levels, the cyclonic circulation of the composited monsoon gyre shrinks with height and is replaced with negative relative vorticity above 200 hPa. The maximum winds of the composited monsoon gyre appear 500–800 km away from the gyre center with a magnitude of 6–10 m s−1 at 850 hPa. In agreement with previous studies, the composited monsoon gyre shows enhanced southwesterly flow and convection on the south-southeastern side. Most of the tropical cyclones associated with monsoon gyres are found to form near the centers of monsoon gyres and the northeastern end of the enhanced southwesterly flows, accompanying relatively weak vertical wind shear.


2015 ◽  
Vol 28 (9) ◽  
pp. 3806-3820 ◽  
Author(s):  
Xidong Wang ◽  
Chunzai Wang ◽  
Liping Zhang ◽  
Xin Wang

Abstract This study investigates the variation of tropical cyclone (TC) rapid intensification (RI) in the western North Pacific (WNP) and its relationship with large-scale climate variability. RI events have exhibited strikingly multidecadal variability. During the warm (cold) phase of the Pacific decadal oscillation (PDO), the annual RI number is generally lower (higher) and the average location of RI occurrence tends to shift southeastward (northwestward). The multidecadal variations of RI are associated with the variations of large-scale ocean and atmosphere variables such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), relative humidity (RHUM), and vertical wind shear (VWS). It is shown that their variations on multidecadal time scales depend on the evolution of the PDO phase. The easterly trade wind is strengthened during the cold PDO phase at low levels, which tends to make equatorial warm water spread northward into the main RI region rsulting from meridional ocean advection associated with Ekman transport. Simultaneously, an anticyclonic wind anomaly is formed in the subtropical gyre of the WNP. This therefore may deepen the depth of the 26°C isotherm and directly increase TCHP over the main RI region. These thermodynamic effects associated with the cold PDO phase greatly support RI occurrence. The reverse is true during the warm PDO phase. The results also indicate that the VWS variability in the low wind shear zone along the monsoon trough may not be critical for the multidecadal modulation of RI events.


2018 ◽  
Vol 31 (19) ◽  
pp. 7739-7749 ◽  
Author(s):  
Si Gao ◽  
Langfeng Zhu ◽  
Wei Zhang ◽  
Zhifan Chen

This study finds a significant positive correlation between the Pacific meridional mode (PMM) index and the frequency of intense tropical cyclones (TCs) over the western North Pacific (WNP) during the peak TC season (June–November). The PMM influences the occurrence of intense TCs mainly by modulating large-scale dynamical conditions over the main development region. During the positive PMM phase, anomalous off-equatorial heating in the eastern Pacific induces anomalous low-level westerlies (and cyclonic flow) and upper-level easterlies (and anticyclonic flow) over a large portion of the main development region through a Matsuno–Gill-type Rossby wave response. The resulting weaker vertical wind shear and larger low-level relative vorticity favor the genesis of intense TCs over the southeastern part of the WNP and their subsequent intensification over the main development region. The PMM index would therefore be a valuable predictor for the frequency of intense TCs over the WNP.


2020 ◽  
pp. 1
Author(s):  
Shaohua Chen ◽  
Haikun Zhao ◽  
Graciela B. Raga ◽  
Philip J. Klotzbach

AbstractThis study highlights the distinct modulation of May-October tropical cyclones (TCs) in the western North Pacific (WNP), eastern North Pacific (ENP) and North Atlantic (NATL) basins by tropical trans-basin variability (TBV) and ENSO. The pure TBV significantly modulates total TC counts in all three basins, with more TCs in the WNP and ENP and fewer TCs in the NATL during warm TBV years and fewer TCs in the WNP and ENP and more TCs in the NATL during cold TBV years. By contrast, the pure ENSO signal shows no impact on total TC count over any of the three basins. These results are consistent with changes in large scale factors associated with TBV and ENSO. Low-level relative vorticity (VOR) is an important driver of WNP TC genesis frequency, with broad agreement between the observed spatial distribution of TC genesis and TBV/ENSO-associated VOR anomalies. TBV significantly affects ENP TC frequency due to changes in basin wide vertical wind shear and sea surface temperatures, while the modulation in TC frequency by ENSO is primarily caused by a north-south dipole modulation of large-scale atmospheric and oceanic factors. The pure TBV-related low-level VOR changes appear to be the most important factor modulating NATL TC frequency. Changes in large-scale factors compare well with the budget of synoptic-scale eddy kinetic energy. Possible physical processes associated with pure TBV and pure ENSO that modulate TC frequency are further discussed. This study contributes to the understanding of TC inter-annual variability and could thus be helpful for seasonal TC forecasting.


2015 ◽  
Vol 143 (4) ◽  
pp. 1122-1141 ◽  
Author(s):  
Heather M. Archambault ◽  
Daniel Keyser ◽  
Lance F. Bosart ◽  
Christopher A. Davis ◽  
Jason M. Cordeira

Abstract This study investigates the composite extratropical flow response to recurving western North Pacific tropical cyclones (WNP TCs), and the dependence of this response on the strength of the TC–extratropical flow interaction as defined by the negative potential vorticity advection (PV) by the irrotational wind associated with the TC. The 2.5° NCEP–NCAR reanalysis is used to construct composite analyses of all 1979–2009 recurving WNP TCs and of subsets that undergo strong and weak TC–extratropical flow interactions. Findings indicate that recurving WNP TCs are associated with the amplification of a preexisting Rossby wave train (RWT) that disperses downstream and modifies the large-scale flow pattern over North America. This RWT affects approximately 240° of longitude and persists for approximately 10 days. Recurving TCs associated with strong TC–extratropical flow interactions are associated with a stronger extratropical flow response than those associated with weak TC–extratropical flow interactions. Compared with weak interactions, strong interactions feature a more distinct upstream trough, stronger and broader divergent outflow associated with stronger midlevel frontogenesis and forcing for ascent over and northeast of the TC, and stronger upper-level PV frontogenesis that promotes more pronounced jet streak intensification. During strong interactions, divergent outflow helps anchor and amplify a downstream ridge, thereby amplifying a preexisting RWT from Asia that disperses downstream to North America. In contrast, during weak interactions, divergent outflow weakly amplifies a downstream ridge, such that a RWT briefly amplifies in situ before dissipating over the western-central North Pacific.


Sign in / Sign up

Export Citation Format

Share Document