Anthropogenic and Natural Contributions to the Lengthening of the Summer Season in the Northern Hemisphere

2018 ◽  
Vol 31 (17) ◽  
pp. 6803-6819 ◽  
Author(s):  
Bo-Joung Park ◽  
Yeon-Hee Kim ◽  
Seung-Ki Min ◽  
Eun-Pa Lim

Observed long-term variations in summer season timing and length in the Northern Hemisphere (NH) continents and their subregions were analyzed using temperature-based indices. The climatological mean showed coastal–inland contrast; summer starts and ends earlier inland than in coastal areas because of differences in heat capacity. Observations for the past 60 years (1953–2012) show lengthening of the summer season with earlier summer onset and delayed summer withdrawal across the NH. The summer onset advance contributed more to the observed increase in summer season length in many regions than the delay of summer withdrawal. To understand anthropogenic and natural contributions to the observed change, summer season trends from phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel simulations forced with the observed external forcings [anthropogenic plus natural forcing (ALL), natural forcing only (NAT), and greenhouse gas forcing only (GHG)] were analyzed. ALL and GHG simulations were found to reproduce the overall observed global and regional lengthening trends, but NAT had negligible trends, which implies that increased greenhouse gases were the main cause of the observed changes. However, ALL runs tend to underestimate the observed trend of summer onset and overestimate that of withdrawal, the causes of which remain to be determined. Possible contributions of multidecadal variabilities, such as Pacific decadal oscillation and Atlantic multidecadal oscillation, to the observed regional trends in summer season length were also assessed. The results suggest that multidecadal variability can explain a moderate portion (about ±10%) of the observed trends in summer season length, mainly over the high latitudes.

2020 ◽  
Vol 33 (24) ◽  
pp. 10539-10553
Author(s):  
Evan Weller ◽  
Bo-Joung Park ◽  
Seung-Ki Min

AbstractThis study provides the first quantitative assessment of observed long-term changes in summer-season timing and length in the Southern Hemisphere (SH) and its subregions over the past 60 years, enabling a global completeness by complementing such characteristics previously reported for the Northern Hemisphere (NH). Using an objective algorithm that is based on temperature indices, relative measures of summer onset, withdrawal, and duration are determined at each land location over the period 1953–2012. Significant widespread summer-season lengthening, due to earlier onset and delayed withdrawal, has occurred across the SH, a longer period for extreme heat-wave events and wildfires to potentially occur. The asymmetric magnitude (onset vs withdrawal) in summer-season lengthening is slightly less over the SH than over the NH. Contributions of anthropogenic and natural factors to the observed trends in summer-season characteristics were investigated using phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel simulations integrated with observed external forcings [anthropogenic plus natural (ALL)], greenhouse gas forcing only (GHG), and natural forcing only [solar and volcanic activities (NAT)]. Overall, consistent with the NH, increased greenhouse gases were the main cause of observed changes in the SH, with negligible contribution from other external forcings. ALL and GHG simulations also reproduced a slight tendency for earlier summer onset to contribute more to summer lengthening. Proportions of observed regional trends in summer-season indices attributable to trends in long-term internal variability in the SH, namely, the interdecadal Pacific oscillation (IPO) and southern annular mode (SAM), suggests such variability can only explain up to ~12%, supporting the dominant role of greenhouse gas forcing.


2021 ◽  
Author(s):  
Bo-Joung Park ◽  
Seung-Ki Min

<p>Due to the ongoing robust global warming, summer season is expected to get warmer in future over the Northern Hemisphere (NH) land areas. This study examined how the summer season defined by local temperature-based thresholds would change during the 21st century under Shared Socioeconomic Pathway scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5) using Coupled Model Intercomparison Project phase 6 (CMIP6) multiple model simulations. The projection results relative to the current climatology (1995-2014) indicate the significant advance of summer onset and delay of withdrawal over all NH land areas except high latitude locations, with longer than 10 days of summer expansion even in the weakest scenario (SSP1-2.6) in the near-term future (2021-2040). The advance and delay of summer season timing become stronger in the mid-term (2041-2060) and long-term (2081-2020) future periods, ranging from about 10 days to a month depending on SSP scenarios. Largest summer expansion is observed in the middle latitudes, including Europe in high latitude, while the weakest changes are seen over North Asia. Canadian Arctic region is characterized by an asymmetric change with a small advance of summer onset but a relatively large delay in summer ending. CMIP6 models exhibit large inter-model differences, which increase from near-term to long-term future periods. Western North Asia region display larger inter-model difference in summer onset projections while Europe has the largest inter-model spread of summer withdrawal changes. Physical mechanisms associated with these regional and timing-dependent changes in the future summer season lengthening will be further examined.</p>


2016 ◽  
Vol 9 (10) ◽  
pp. 3589-3604 ◽  
Author(s):  
Tianjun Zhou ◽  
Andrew G. Turner ◽  
James L. Kinter ◽  
Bin Wang ◽  
Yun Qian ◽  
...  

Abstract. The Global Monsoons Model Inter-comparison Project (GMMIP) has been endorsed by the panel of Coupled Model Inter-comparison Project (CMIP) as one of the participating model inter-comparison projects (MIPs) in the sixth phase of CMIP (CMIP6). The focus of GMMIP is on monsoon climatology, variability, prediction and projection, which is relevant to four of the “Grand Challenges” proposed by the World Climate Research Programme. At present, 21 international modeling groups are committed to joining GMMIP. This overview paper introduces the motivation behind GMMIP and the scientific questions it intends to answer. Three tiers of experiments, of decreasing priority, are designed to examine (a) model skill in simulating the climatology and interannual-to-multidecadal variability of global monsoons forced by the sea surface temperature during historical climate period; (b) the roles of the Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation in driving variations of the global and regional monsoons; and (c) the effects of large orographic terrain on the establishment of the monsoons. The outputs of the CMIP6 Diagnostic, Evaluation and Characterization of Klima experiments (DECK), “historical” simulation and endorsed MIPs will also be used in the diagnostic analysis of GMMIP to give a comprehensive understanding of the roles played by different external forcings, potential improvements in the simulation of monsoon rainfall at high resolution and reproducibility at decadal timescales. The implementation of GMMIP will improve our understanding of the fundamental physics of changes in the global and regional monsoons over the past 140 years and ultimately benefit monsoons prediction and projection in the current century.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 135 ◽  
Author(s):  
◽  
◽  
◽  
◽  
◽  
...  

Observed changes in Northern Hemisphere snow cover from satellite records were compared to those predicted by all available Coupled Model Intercomparison Project Phase 5 (“CMIP5”) climate models over the duration of the satellite’s records, i.e., 1967–2018. A total of 196 climate model runs were analyzed (taken from 24 climate models). Separate analyses were conducted for the annual averages and for each of the seasons (winter, spring, summer, and autumn/fall). A longer record (1922–2018) for the spring season which combines ground-based measurements with satellite measurements was also compared to the model outputs. The climate models were found to poorly explain the observed trends. While the models suggest snow cover should have steadily decreased for all four seasons, only spring and summer exhibited a long-term decrease, and the pattern of the observed decreases for these seasons was quite different from the modelled predictions. Moreover, the observed trends for autumn and winter suggest a long-term increase, although these trends were not statistically significant. Possible explanations for the poor performance of the climate models are discussed.


2016 ◽  
Author(s):  
Tianjun Zhou ◽  
Andrew Turner ◽  
James Kinter ◽  
Bin Wang ◽  
Yun Qian ◽  
...  

Abstract. The Global Monsoons Model Inter-comparison Project (GMMIP) has been endorsed by the panel of Coupled Model Inter-comparison Project (CMIP) as one of the participating MIPs in the sixth phase of CMIP (CMIP6). The focus of GMMIP is on monsoon climatology, variability, prediction and projection, which is relevant to four of the "Grand Challenges" proposed by the World Climate Research Programme. At present, 21 international modelling groups are committed to joining GMMIP. This overview paper introduces the motivation behind GMMIP and the scientific questions it intends to answer. Three tiers of experiments, of decreasing priority, are designed to examine: (a) model skill in simulating the climatology and interannual-to-multidecadal variability of global monsoons during SST-forced experiments of the historical climate period; (b) the roles of the Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation in driving variations of the global and regional monsoons; and (c) the effects of large orographic terrain on the establishment of the monsoons. The outputs of the CMIP6 DECK, "historical" simulation and other MIPs will also be used in the diagnostic analysis of GMMIP to give a comprehensive understanding of the roles played by different external forcings, potential improvements in the simulation of monsoon rainfall at high resolution and predictability at decadal time scales. The implementation of GMMIP will improve our understanding of the fundamental physics of changes in the global and regional monsoons over the past 140 years and ultimately benefit monsoon prediction and projection in the current century.


The Holocene ◽  
2021 ◽  
pp. 095968362098803
Author(s):  
Thanh Le ◽  
Deg-Hyo Bae

The Indian Ocean Dipole (IOD) is a major mode of interannual climate variability, but its response to external climate forcings (i.e. solar forcing, volcanic radiative forcing (VRF) and greenhouse gas (GHG) radiative forcing) remains elusive. To improve our understanding of the variability of the IOD, it is necessary to investigate the IOD’s response to external forcings through multi-model simulations. Here a Granger causality test is used to examine the impact of external forcings on the IOD from past 1000 years simulations (850–1850 Common Era) derived from Coupled Model Intercomparison Project Phase 5 (CMIP5) models. The results show significant causal effects of VRF on the IOD in preindustrial times of the past 1000 years from the MPI-ESM-P, MRI-CGCM3, GISS-E2-R and CCSM4 models and uncertainties in the IOD’s responses to volcanic eruptions from other six models. Additionally, the phase responses (i.e. positive or negative) of the IOD to large volcanic eruptions remain unclear even from models showing significant causal impacts of VRF on the IOD. This result shows that the IOD exhibits a more complex response to volcanic forcing than the El Niño-Southern Oscillation. The causal impact of solar forcing on the IOD is more likely to be weak in most models. The IOD’s response to GHG variations is not significant across all the models due to minor fluctuations in GHGs occurring during preindustrial times of the past 1000 years. Further analyses based on new, improved and higher resolution models might further our understanding of the IOD’s responses to external forcing.


2013 ◽  
Vol 26 (17) ◽  
pp. 6679-6697 ◽  
Author(s):  
Debbie Polson ◽  
Gabriele C. Hegerl ◽  
Xuebin Zhang ◽  
Timothy J. Osborn

Abstract Historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) archive are used to calculate the zonal-mean change in seasonal land precipitation for the second half of the twentieth century in response to a range of external forcings, including anthropogenic and natural forcings combined (ALL), greenhouse gas forcing, anthropogenic aerosol forcing, anthropogenic forcings combined, and natural forcing. These simulated patterns of change are used as fingerprints in a detection and attribution study applied to four different gridded observational datasets of global land precipitation from 1951 to 2005. There are large differences in the spatial and temporal coverage in the observational datasets. Yet despite these differences, the zonal-mean patterns of change are mostly consistent except at latitudes where spatial coverage is limited. The results show some differences between datasets, but the influence of external forcings is robustly detected in March–May, December–February, and for annual changes for the three datasets more suitable for studying changes. For June–August and September–November, external forcing is only detected for the dataset that includes only long-term stations. Fingerprints for combinations of forcings that include the effect of greenhouse gases are similarly detectable to those for ALL forcings, suggesting that greenhouse gas influence drives the detectable features of the ALL forcing fingerprint. Fingerprints of only natural or only anthropogenic aerosol forcing are not detected. This, together with two-fingerprint results, suggests that at least some of the detected change in zonal land precipitation can be attributed to human influences.


2021 ◽  
Author(s):  
Anni Zhao ◽  
Chris Brierley

<p>Experiment outputs are now available from the Coupled Model Intercomparison Project’s 6<sup>th</sup> phase (CMIP6) and the past climate experiments defined in the Model Intercomparison Project’s 4<sup>th</sup> phase (PMIP4). All of this output is freely available from the Earth System Grid Federation (ESGF). Yet there are overheads in analysing this resource that may prove complicated or prohibitive. Here we document the steps taken by ourselves to produce ensemble analyses covering past and future simulations. We outline the strategy used to curate, adjust the monthly calendar aggregation and process the information downloaded from the ESGF. The results of these steps were used to perform analysis for several of the initial publications arising from PMIP4. We provide post-processed fields for each simulation, such as climatologies and common measures of variability. Example scripts used to visualise and analyse these fields is provided for several important case studies.</p>


2021 ◽  
Author(s):  
Yeon-Hee Kim ◽  
Seung-Ki Min

<p>Arctic sea-ice area (ASIA) has been declining rapidly throughout the year during recent decades, but a formal quantification of greenhouse gas (GHG) contribution remains limited. This study conducts an attribution analysis of the observed ASIA changes from 1979 to 2017 by comparing three satellite observations with the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model simulations using an optimal fingerprint method. The observed ASIA exhibits overall decreasing trends across all months with stronger trends in warm seasons. CMIP6 anthropogenic plus natural forcing (ALL) simulations and GHG-only forcing simulations successfully capture the observed temporal trend patterns. Results from detection analysis show that ALL signals are detected robustly for all calendar months for three observations. It is found that GHG signals are detectable in the observed ASIA decrease throughout the year, explaining most of the ASIA reduction, with a much weaker contribution by other external forcings. We additionally find that the Arctic Ocean will occur ice-free in September around the 2040s regardless of the emission scenario.</p>


2019 ◽  
Vol 5 (4) ◽  
pp. eaav7337 ◽  
Author(s):  
M. Willeit ◽  
A. Ganopolski ◽  
R. Calov ◽  
V. Brovkin

Variations in Earth’s orbit pace the glacial-interglacial cycles of the Quaternary, but the mechanisms that transform regional and seasonal variations in solar insolation into glacial-interglacial cycles are still elusive. Here, we present transient simulations of coevolution of climate, ice sheets, and carbon cycle over the past 3 million years. We show that a gradual lowering of atmospheric CO2and regolith removal are essential to reproduce the evolution of climate variability over the Quaternary. The long-term CO2decrease leads to the initiation of Northern Hemisphere glaciation and an increase in the amplitude of glacial-interglacial variations, while the combined effect of CO2decline and regolith removal controls the timing of the transition from a 41,000- to 100,000-year world. Our results suggest that the current CO2concentration is unprecedented over the past 3 million years and that global temperature never exceeded the preindustrial value by more than 2°C during the Quaternary.


Sign in / Sign up

Export Citation Format

Share Document