A Test of Emergent Constraints on Cloud Feedback and Climate Sensitivity Using a Calibrated Single-Model Ensemble

2018 ◽  
Vol 31 (18) ◽  
pp. 7515-7532 ◽  
Author(s):  
Benjamin M. Wagman ◽  
Charles S. Jackson

A calibrated single-model ensemble (SME) derived from the NCAR Community Atmosphere Model, version 3.1, is used to test two hypothesized emergent constraints on cloud feedback and equilibrium climate sensitivity (ECS). The Fasullo and Trenberth relative humidity (RH) metric and the Sherwood et al. lower-tropospheric mixing (LTMI) metric are computed for the present-day climate of the SME, and the relationships between the metrics, ECS, and cloud and other climate feedbacks are examined. The tropical convergence zone relative humidity (RH M) and the parameterized lower-tropospheric mixing (LTMI S) are positively correlated to ECS, and each is associated with a different spatial pattern of tropical shortwave cloud feedback in the SME. However, neither of those metrics is linked to the type of cloud response hypothesized by its authors. The resolved lower-tropospheric mixing (LTMI D) is positively correlated to ECS for a subset of the SME having LTMI D over a threshold value. LTMI and the RH for the dry, descending branch of the Hadley cell (RH D) narrow and shift upward the posterior estimates of ECS in the SME, but the SME bias in RH D and concerns over poorly understood physical mechanisms suggest the narrowing could be spurious for both constraints. While calibrated SME results may not generalize to multimodel ensembles, they can enhance the process understanding of emergent constraints and serve as out-of-sample tests of robustness.

2018 ◽  
Vol 31 (2) ◽  
pp. 863-875 ◽  
Author(s):  
Xin Qu ◽  
Alex Hall ◽  
Anthony M. DeAngelis ◽  
Mark D. Zelinka ◽  
Stephen A. Klein ◽  
...  

Differences among climate models in equilibrium climate sensitivity (ECS; the equilibrium surface temperature response to a doubling of atmospheric CO2) remain a significant barrier to the accurate assessment of societally important impacts of climate change. Relationships between ECS and observable metrics of the current climate in model ensembles, so-called emergent constraints, have been used to constrain ECS. Here a statistical method (including a backward selection process) is employed to achieve a better statistical understanding of the connections between four recently proposed emergent constraint metrics and individual feedbacks influencing ECS. The relationship between each metric and ECS is largely attributable to a statistical connection with shortwave low cloud feedback, the leading cause of intermodel ECS spread. This result bolsters confidence in some of the metrics, which had assumed such a connection in the first place. Additional analysis is conducted with a few thousand artificial metrics that are randomly generated but are well correlated with ECS. The relationships between the contrived metrics and ECS can also be linked statistically to shortwave cloud feedback. Thus, any proposed or forthcoming ECS constraint based on the current generation of climate models should be viewed as a potential constraint on shortwave cloud feedback, and physical links with that feedback should be investigated to verify that the constraint is real. In addition, any proposed ECS constraint should not be taken at face value since other factors influencing ECS besides shortwave cloud feedback could be systematically biased in the models.


Author(s):  
Timothy A. Myers ◽  
Ryan C. Scott ◽  
Mark D. Zelinka ◽  
Stephen A. Klein ◽  
Joel R. Norris ◽  
...  

2021 ◽  
Author(s):  
Lun Du ◽  
Xiaozhou Shi ◽  
Yanlin Wang ◽  
Ensheng Shi ◽  
Shi Han ◽  
...  

2013 ◽  
Vol 17 (6) ◽  
pp. 2107-2120 ◽  
Author(s):  
S. Davolio ◽  
M. M. Miglietta ◽  
T. Diomede ◽  
C. Marsigli ◽  
A. Montani

Abstract. Numerical weather prediction models can be coupled with hydrological models to generate streamflow forecasts. Several ensemble approaches have been recently developed in order to take into account the different sources of errors and provide probabilistic forecasts feeding a flood forecasting system. Within this framework, the present study aims at comparing two high-resolution limited-area meteorological ensembles, covering short and medium range, obtained via different methodologies, but implemented with similar number of members, horizontal resolution (about 7 km), and driving global ensemble prediction system. The former is a multi-model ensemble, based on three mesoscale models (BOLAM, COSMO, and WRF), while the latter, following a single-model approach, is the operational ensemble forecasting system developed within the COSMO consortium, COSMO-LEPS (limited-area ensemble prediction system). The meteorological models are coupled with a distributed rainfall-runoff model (TOPKAPI) to simulate the discharge of the Reno River (northern Italy), for a recent severe weather episode affecting northern Apennines. The evaluation of the ensemble systems is performed both from a meteorological perspective over northern Italy and in terms of discharge prediction over the Reno River basin during two periods of heavy precipitation between 29 November and 2 December 2008. For each period, ensemble performance has been compared at two different forecast ranges. It is found that, for the intercomparison undertaken in this specific study, both mesoscale model ensembles outperform the global ensemble for application at basin scale. Horizontal resolution is found to play a relevant role in modulating the precipitation distribution. Moreover, the multi-model ensemble provides a better indication concerning the occurrence, intensity and timing of the two observed discharge peaks, with respect to COSMO-LEPS. This seems to be ascribable to the different behaviour of the involved meteorological models. Finally, a different behaviour comes out at different forecast ranges. For short ranges, the impact of boundary conditions is weaker and the spread can be mainly attributed to the different characteristics of the models. At longer forecast ranges, the similar behaviour of the multi-model members forced by the same large-scale conditions indicates that the systems are governed mainly by the boundary conditions, although the different limited area models' characteristics may still have a non-negligible impact.


2020 ◽  
Vol 11 (4) ◽  
pp. 1233-1258
Author(s):  
Manuel Schlund ◽  
Axel Lauer ◽  
Pierre Gentine ◽  
Steven C. Sherwood ◽  
Veronika Eyring

Abstract. An important metric for temperature projections is the equilibrium climate sensitivity (ECS), which is defined as the global mean surface air temperature change caused by a doubling of the atmospheric CO2 concentration. The range for ECS assessed by the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report is between 1.5 and 4.5 K and has not decreased over the last decades. Among other methods, emergent constraints are potentially promising approaches to reduce the range of ECS by combining observations and output from Earth System Models (ESMs). In this study, we systematically analyze 11 published emergent constraints on ECS that have mostly been derived from models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) project. These emergent constraints are – except for one that is based on temperature variability – all directly or indirectly based on cloud processes, which are the major source of spread in ECS among current models. The focus of the study is on testing if these emergent constraints hold for ESMs participating in the new Phase 6 (CMIP6). Since none of the emergent constraints considered here have been derived using the CMIP6 ensemble, CMIP6 can be used for cross-checking of the emergent constraints on a new model ensemble. The application of the emergent constraints to CMIP6 data shows a decrease in skill and statistical significance of the emergent relationship for nearly all constraints, with this decrease being large in many cases. Consequently, the size of the constrained ECS ranges (66 % confidence intervals) widens by 51 % on average in CMIP6 compared to CMIP5. This is likely because of changes in the representation of cloud processes from CMIP5 to CMIP6, but may in some cases also be due to spurious statistical relationships or a too small number of models in the ensemble that the emergent constraint was originally derived from. The emergently- constrained best estimates of ECS also increased from CMIP5 to CMIP6 by 12 % on average. This can be at least partly explained by the increased number of high-ECS (above 4.5 K) models in CMIP6 without a corresponding change in the constraint predictors, suggesting the emergence of new feedback processes rather than changes in strength of those previously dominant. Our results support previous studies concluding that emergent constraints should be based on an independently verifiable physical mechanism, and that process-based emergent constraints on ECS should rather be thought of as constraints for the process or feedback they are actually targeting.


2020 ◽  
Author(s):  
Martin Renoult ◽  
James Annan ◽  
Julia Hargreaves ◽  
Navjit Sagoo ◽  
Clare Flynn ◽  
...  

<p>In this study we introduce a Bayesian framework, which is flexible and explicit about the prior assumptions, for using model ensembles and observations together to constrain future climate change. The emergent constraint approach has seen broad application in recent years, including studies constraining the equilibrium climate sensitivity (ECS) using the Last Glacial Maximum (LGM) and the mid-Pliocene Warm Period (mPWP). Most of these studies were based on Ordinary Least Squares (OLS) fits between a variable of the climate state, such as tropical temperature, and climate sensitivity. Using our Bayesian method, and considering the LGM and mPWP separately, we obtain values of ECS of 2.7 K (1.1 - 4.8, 5 - 95 percentiles) using the PMIP2, PMIP3 and PMIP4 data sets for the LGM, and 2.4 K (0.4 - 5.0) with the PlioMIP1 and PlioMIP2 data sets for the mPWP. Restricting the ensembles to include only the most recent version of each model, we obtain 2.7 K (1.1 - 4.3) using the LGM and  2.4 K (0.4 - 5.1) using the mPWP. An advantage of the Bayesian framework is that it is possible to combine the two periods assuming they are independent, whereby we obtain a slightly tighter constraint of 2.6 K (1.1 - 3.9). We have explored the sensitivity to our assumptions in the method, including considering structural uncertainty, and in the choice of models, and this leads to 95% probability of climate sensitivity mostly below 5 and never exceeding 6 K. The approach is compared with other approaches based on OLS, a Kalman filter method and an alternative Bayesian method. An interesting implication of this work is that OLS-based emergent constraints on ECS generate tighter uncertainty estimates, in particular at the lower end, suggesting a higher bound by construction in case of weaker correlation. Although some fundamental challenges related to the use of emergent constraints remain, this paper provides a step towards a better foundation of their potential use in future probabilistic estimation of climate sensitivity.</p>


2018 ◽  
Vol 45 (9) ◽  
pp. 4438-4445 ◽  
Author(s):  
Tianle Yuan ◽  
Lazaros Oreopoulos ◽  
Steven E. Platnick ◽  
Kerry Meyer

2021 ◽  
pp. 004728752110612
Author(s):  
Yuying Sun ◽  
Jian Zhang ◽  
Xin Li ◽  
Shouyang Wang

Existing research has shown that combination can effectively improve tourism forecasting accuracy compared with single model. However, the model uncertainty and structural instability in combination for out-of-sample tourism forecasting may influence the forecasting performance. This paper proposes a novel forecast combination approach based on time-varying jackknife model averaging (TVJMA), which can more efficiently handle structural changes and nonstationary trends in tourism data. Using Hong Kong tourism demand from five major tourism source regions as an empirical study, we investigate whether our proposed nonparametric TVJMA-based approach can improve tourism forecasting accuracy further. Empirical results show that the proposed TVJMA-based approach outperforms other competitors including single model and three combination methods in most cases. Findings indicate the outstanding performance of our method is robust to various forecasting horizons and different estimation periods.


2018 ◽  
Vol 50 (1) ◽  
pp. 166-186 ◽  
Author(s):  
F. Saleh ◽  
V. Ramaswamy ◽  
N. Georgas ◽  
A. F. Blumberg ◽  
J. Pullen

Abstract The objective of this work was to evaluate the benefits of using multi-model meteorological ensembles in representing the uncertainty of hydrologic forecasts. An inter-comparison experiment was performed using meteorological inputs from different models corresponding to Hurricane Irene (2011), over three sub-basins of the Hudson River basin. The ensemble-based precipitation inputs were used as forcing in a hydrological model to retrospectively forecast hourly streamflow, with a 96-hour lead time. The inputs consisted of 73 ensemble members, namely one high-resolution ECMWF deterministic member, 51 ECMWF members and 21 NOAA/ESRL (GEFS Reforecasts v2) members. The precipitation inputs were resampled to a common grid using the bilinear resampling method that was selected upon analysing different resampling methods. The results show the advantages of forcing hydrologic forecasting systems with multi-model ensemble forecasts over using deterministic and single model ensemble forecasts. The work showed that using the median of all 73 ensemble streamflow forecasts relatively improved the Nash–Sutcliffe Efficiency and lowered the biases across the examined sub-basins, compared with using the ensemble median from an individual model. This research contributes to the growing literature that demonstrates the promising capabilities of multi-model systems to better describe the uncertainty in streamflow predictions.


Sign in / Sign up

Export Citation Format

Share Document