scholarly journals On the Emergent Constraints of Climate Sensitivity

2018 ◽  
Vol 31 (2) ◽  
pp. 863-875 ◽  
Author(s):  
Xin Qu ◽  
Alex Hall ◽  
Anthony M. DeAngelis ◽  
Mark D. Zelinka ◽  
Stephen A. Klein ◽  
...  

Differences among climate models in equilibrium climate sensitivity (ECS; the equilibrium surface temperature response to a doubling of atmospheric CO2) remain a significant barrier to the accurate assessment of societally important impacts of climate change. Relationships between ECS and observable metrics of the current climate in model ensembles, so-called emergent constraints, have been used to constrain ECS. Here a statistical method (including a backward selection process) is employed to achieve a better statistical understanding of the connections between four recently proposed emergent constraint metrics and individual feedbacks influencing ECS. The relationship between each metric and ECS is largely attributable to a statistical connection with shortwave low cloud feedback, the leading cause of intermodel ECS spread. This result bolsters confidence in some of the metrics, which had assumed such a connection in the first place. Additional analysis is conducted with a few thousand artificial metrics that are randomly generated but are well correlated with ECS. The relationships between the contrived metrics and ECS can also be linked statistically to shortwave cloud feedback. Thus, any proposed or forthcoming ECS constraint based on the current generation of climate models should be viewed as a potential constraint on shortwave cloud feedback, and physical links with that feedback should be investigated to verify that the constraint is real. In addition, any proposed ECS constraint should not be taken at face value since other factors influencing ECS besides shortwave cloud feedback could be systematically biased in the models.

2018 ◽  
Vol 31 (10) ◽  
pp. 3921-3942 ◽  
Author(s):  
Peter M. Caldwell ◽  
Mark D. Zelinka ◽  
Stephen A. Klein

Emergent constraints are quantities that are observable from current measurements and have skill predicting future climate. This study explores 19 previously proposed emergent constraints related to equilibrium climate sensitivity (ECS; the global-average equilibrium surface temperature response to CO2 doubling). Several constraints are shown to be closely related, emphasizing the importance for careful understanding of proposed constraints. A new method is presented for decomposing correlation between an emergent constraint and ECS into terms related to physical processes and geographical regions. Using this decomposition, one can determine whether the processes and regions explaining correlation with ECS correspond to the physical explanation offered for the constraint. Shortwave cloud feedback is generally found to be the dominant contributor to correlations with ECS because it is the largest source of intermodel spread in ECS. In all cases, correlation results from interaction between a variety of terms, reflecting the complex nature of ECS and the fact that feedback terms and forcing are themselves correlated with each other. For 4 of the 19 constraints, the originally proposed explanation for correlation is borne out by our analysis. These four constraints all predict relatively high climate sensitivity. The credibility of six other constraints is called into question owing to correlation with ECS coming mainly from unexpected sources and/or lack of robustness to changes in ensembles. Another six constraints lack a testable explanation and hence cannot be confirmed. The fact that this study casts doubt upon more constraints than it confirms highlights the need for caution when identifying emergent constraints from small ensembles.


Author(s):  
Timothy A. Myers ◽  
Ryan C. Scott ◽  
Mark D. Zelinka ◽  
Stephen A. Klein ◽  
Joel R. Norris ◽  
...  

2020 ◽  
Vol 11 (4) ◽  
pp. 1233-1258
Author(s):  
Manuel Schlund ◽  
Axel Lauer ◽  
Pierre Gentine ◽  
Steven C. Sherwood ◽  
Veronika Eyring

Abstract. An important metric for temperature projections is the equilibrium climate sensitivity (ECS), which is defined as the global mean surface air temperature change caused by a doubling of the atmospheric CO2 concentration. The range for ECS assessed by the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report is between 1.5 and 4.5 K and has not decreased over the last decades. Among other methods, emergent constraints are potentially promising approaches to reduce the range of ECS by combining observations and output from Earth System Models (ESMs). In this study, we systematically analyze 11 published emergent constraints on ECS that have mostly been derived from models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) project. These emergent constraints are – except for one that is based on temperature variability – all directly or indirectly based on cloud processes, which are the major source of spread in ECS among current models. The focus of the study is on testing if these emergent constraints hold for ESMs participating in the new Phase 6 (CMIP6). Since none of the emergent constraints considered here have been derived using the CMIP6 ensemble, CMIP6 can be used for cross-checking of the emergent constraints on a new model ensemble. The application of the emergent constraints to CMIP6 data shows a decrease in skill and statistical significance of the emergent relationship for nearly all constraints, with this decrease being large in many cases. Consequently, the size of the constrained ECS ranges (66 % confidence intervals) widens by 51 % on average in CMIP6 compared to CMIP5. This is likely because of changes in the representation of cloud processes from CMIP5 to CMIP6, but may in some cases also be due to spurious statistical relationships or a too small number of models in the ensemble that the emergent constraint was originally derived from. The emergently- constrained best estimates of ECS also increased from CMIP5 to CMIP6 by 12 % on average. This can be at least partly explained by the increased number of high-ECS (above 4.5 K) models in CMIP6 without a corresponding change in the constraint predictors, suggesting the emergence of new feedback processes rather than changes in strength of those previously dominant. Our results support previous studies concluding that emergent constraints should be based on an independently verifiable physical mechanism, and that process-based emergent constraints on ECS should rather be thought of as constraints for the process or feedback they are actually targeting.


2020 ◽  
Author(s):  
Martin Renoult ◽  
James Annan ◽  
Julia Hargreaves ◽  
Navjit Sagoo ◽  
Clare Flynn ◽  
...  

<p>In this study we introduce a Bayesian framework, which is flexible and explicit about the prior assumptions, for using model ensembles and observations together to constrain future climate change. The emergent constraint approach has seen broad application in recent years, including studies constraining the equilibrium climate sensitivity (ECS) using the Last Glacial Maximum (LGM) and the mid-Pliocene Warm Period (mPWP). Most of these studies were based on Ordinary Least Squares (OLS) fits between a variable of the climate state, such as tropical temperature, and climate sensitivity. Using our Bayesian method, and considering the LGM and mPWP separately, we obtain values of ECS of 2.7 K (1.1 - 4.8, 5 - 95 percentiles) using the PMIP2, PMIP3 and PMIP4 data sets for the LGM, and 2.4 K (0.4 - 5.0) with the PlioMIP1 and PlioMIP2 data sets for the mPWP. Restricting the ensembles to include only the most recent version of each model, we obtain 2.7 K (1.1 - 4.3) using the LGM and  2.4 K (0.4 - 5.1) using the mPWP. An advantage of the Bayesian framework is that it is possible to combine the two periods assuming they are independent, whereby we obtain a slightly tighter constraint of 2.6 K (1.1 - 3.9). We have explored the sensitivity to our assumptions in the method, including considering structural uncertainty, and in the choice of models, and this leads to 95% probability of climate sensitivity mostly below 5 and never exceeding 6 K. The approach is compared with other approaches based on OLS, a Kalman filter method and an alternative Bayesian method. An interesting implication of this work is that OLS-based emergent constraints on ECS generate tighter uncertainty estimates, in particular at the lower end, suggesting a higher bound by construction in case of weaker correlation. Although some fundamental challenges related to the use of emergent constraints remain, this paper provides a step towards a better foundation of their potential use in future probabilistic estimation of climate sensitivity.</p>


2018 ◽  
Vol 45 (9) ◽  
pp. 4438-4445 ◽  
Author(s):  
Tianle Yuan ◽  
Lazaros Oreopoulos ◽  
Steven E. Platnick ◽  
Kerry Meyer

2019 ◽  
Vol 32 (9) ◽  
pp. 2497-2516 ◽  
Author(s):  
Ehsan Erfani ◽  
Natalie J. Burls

Abstract Variability in the strength of low-cloud feedbacks across climate models is the primary contributor to the spread in their estimates of equilibrium climate sensitivity (ECS). This raises the question: What are the regional implications for key features of tropical climate of globally weak versus strong low-cloud feedbacks in response to greenhouse gas–induced warming? To address this question and formalize our understanding of cloud controls on tropical climate, we perform a suite of idealized fully coupled and slab-ocean climate simulations across which we systematically scale the strength of the low-cloud-cover feedback under abrupt 2 × CO2 forcing within a single model, thereby isolating the impact of low-cloud feedback strength. The feedback strength is varied by modifying the stratus cloud fraction so that it is a function of not only local conditions but also global temperature in a series of abrupt 2 × CO2 sensitivity experiments. The unperturbed decrease in low cloud cover (LCC) under 2 × CO2 is greatest in the mid- and high-latitude oceans, and the subtropical eastern Pacific and Atlantic, a pattern that is magnified as the feedback strength is scaled. Consequently, sea surface temperature (SST) increases more in these regions as well as the Pacific cold tongue. As the strength of the low-cloud feedback increases this results in not only increased ECS, but also an enhanced reduction of the large-scale zonal and meridional SST gradients (structural climate sensitivity), with implications for the atmospheric Hadley and Walker circulations, as well as the hydrological cycle. The relevance of our results to simulating past warm climate is also discussed.


2020 ◽  
Author(s):  
Hege-Beate Fredriksen

<p>We investigate a new algorithm for estimating time-evolving global forcing in climate models. The method is an extension of a previous method by Forster et al. (2013), but here we also allow for a globally nonlinear feedback. We assume the nonlinearity of this global feedback can be explained as a time-scale dependence, associated with linear temperature responses to the forcing on different time scales, as in Proistosescu and Huybers (2017). With this method we obtain stronger forcing estimates than previously believed for the representative concentration pathway experiments in CMIP5 models. The reason for the higher future forcing is that the global feedback has a higher magnitude at the smaller time scales than at the longer time scales – this is closely related to provided arguments for the equilibrium climate sensitivity showing changes with time.</p><p>We find also that the linear temperature response to our new forcing predicts the modelled response quite well, although the response is a little overestimated for some CMIP5 models. Finally, we discuss the assumptions made in our study, and consistency of our assumptions with other leading hypotheses for why the global feedback is nonlinear.</p><p> </p><p>References:</p><p>Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka (2013), Evaluating adjusted forcing and model spread for historical and future scenarios in the cmip5 generation of climate models, Journal of Geophysical Research, 118, 1139–1150, doi:10.1002/jgrd.50174.</p><p>Proistosescu, C., and P. J. Huybers (2017), Slow climate mode reconciles historical and model-based estimates of climate sensitivity, Sci. Adv., 3, e1602, 821, doi:10.1126/sciadv.1602821</p>


2016 ◽  
Vol 29 (17) ◽  
pp. 6259-6275 ◽  
Author(s):  
Youichi Kamae ◽  
Hideo Shiogama ◽  
Masahiro Watanabe ◽  
Tomoo Ogura ◽  
Tokuta Yokohata ◽  
...  

Abstract Factors and possible constraints to extremely large spread of effective climate sensitivity (ECS) ranging about 2.1–10.4 K are examined by using a large-member ensemble of quadrupling CO2 experiments with an atmospheric general circulation model (AGCM). The ensemble, called the multiparameter multiphysics ensemble (MPMPE), consists of both parametric and structural uncertainties in parameterizations of cloud, cumulus convection, and turbulence based on two different versions of AGCM. The sum of the low- and middle-cloud shortwave feedback explains most of the ECS spread among the MPMPE members. For about half of the perturbed physics ensembles (PPEs) in the MPMPE, variation in lower-tropospheric mixing intensity (LTMI) corresponds well with the ECS variation, whereas it does not for the other half. In the latter PPEs, large spread in optically thick middle-cloud feedback over the equatorial ocean substantially affects the ECS, disrupting the LTMI–ECS relationship. Although observed LTMI can constrain uncertainty in the low-cloud feedback, total uncertainty of the ECS among the MPMPE cannot solely be explained by the LTMI, suggesting a limitation of single emergent constraint for the ECS.


2020 ◽  
Author(s):  
Clare Marie Flynn ◽  
Thorsten Mauritsen

Abstract. The Earth's equilibrium climate sensitivity (ECS) to a doubling of atmospheric CO2, along with the transient 35 climate response (TCR) and greenhouse gas emissions pathways, determines the amount of future warming. Coupled climate models have in the past been important tools to estimate and understand ECS. ECS estimated from Coupled Model Intercomparison Project Phase 5 (CMIP5) models lies between 2.0 and 4.7 K (mean of 3.2 K), whereas in the latest CMIP6 the spread has increased: 1.8–5.5 K (mean of 3.7 K), with 5 out of 25 models exceeding 5 K. It is thus pertinent to understand the causes underlying this shift. Here we compare the CMIP5 and CMIP6 model ensembles, and find a systematic shift between CMIP eras to be unexplained as a process of random sampling from modeled forcing and feedback distributions. Instead, shortwave feedbacks shift towards more positive values, in particular over the Southern Ocean, driving the shift towards larger ECS values in many of the models. These results suggest that changes in model treatment of mixed-phase cloud processes and changes to Antarctic sea ice representation are likely causes of the shift towards larger ECS. Somewhat surprisingly, CMIP6 models exhibit less historical warming than CMIP5 models; the evolution of the warming suggests, however, that several of the models apply too strong aerosol cooling resulting in too weak mid 20th Century warming compared to the instrumental record.


2020 ◽  
Vol 16 (6) ◽  
pp. 2095-2123 ◽  
Author(s):  
Alan M. Haywood ◽  
Julia C. Tindall ◽  
Harry J. Dowsett ◽  
Aisling M. Dolan ◽  
Kevin M. Foley ◽  
...  

Abstract. The Pliocene epoch has great potential to improve our understanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ∼400 parts per million by volume. Here we present the large-scale features of Pliocene climate as simulated by a new ensemble of climate models of varying complexity and spatial resolution based on new reconstructions of boundary conditions (the Pliocene Model Intercomparison Project Phase 2; PlioMIP2). As a global annual average, modelled surface air temperatures increase by between 1.7 and 5.2 ∘C relative to the pre-industrial era with a multi-model mean value of 3.2 ∘C. Annual mean total precipitation rates increase by 7 % (range: 2 %–13 %). On average, surface air temperature (SAT) increases by 4.3 ∘C over land and 2.8 ∘C over the oceans. There is a clear pattern of polar amplification with warming polewards of 60∘ N and 60∘ S exceeding the global mean warming by a factor of 2.3. In the Atlantic and Pacific oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. There is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (equilibrium climate sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble Earth system response to a doubling of CO2 (including ice sheet feedbacks) is 67 % greater than ECS; this is larger than the increase of 47 % obtained from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea surface temperatures are used to assess model estimates of ECS and give an ECS range of 2.6–4.8 ∘C. This result is in general accord with the ECS range presented by previous Intergovernmental Panel on Climate Change (IPCC) Assessment Reports.


Sign in / Sign up

Export Citation Format

Share Document