scholarly journals Southern Ocean Heat Uptake, Redistribution, and Storage in a Warming Climate: The Role of Meridional Overturning Circulation

2018 ◽  
Vol 31 (12) ◽  
pp. 4727-4743 ◽  
Author(s):  
Wei Liu ◽  
Jian Lu ◽  
Shang-Ping Xie ◽  
Alexey Fedorov

Climate models show that most of the anthropogenic heat resulting from increased atmospheric CO2 enters the Southern Ocean near 60°S and is stored around 45°S. This heat is transported to the ocean interior by the meridional overturning circulation (MOC) with wind changes playing an important role in the process. To isolate and quantify the latter effect, we apply an overriding technique to a climate model and decompose the total ocean response to CO2 increase into two major components: one due to wind changes and the other due to direct CO2 effect. We find that the poleward-intensified zonal surface winds tend to shift and strengthen the ocean Deacon cell and hence the residual MOC, leading to anomalous divergence of ocean meridional heat transport around 60°S coupled to a surface heat flux increase. In contrast, at 45°S we see anomalous convergence of ocean heat transport and heat loss at the surface. As a result, the wind-induced ocean heat storage (OHS) peaks at 46°S at a rate of 0.07 ZJ yr−1 (° lat)−1 (1 ZJ = 1021 J), contributing 20% to the total OHS maximum. The direct CO2 effect, on the other hand, very slightly alters the residual MOC but primarily warms the ocean. It induces a small but nonnegligible change in eddy heat transport and causes OHS to peak at 42°S at a rate of 0.30 ZJ yr−1 (° lat)−1, accounting for 80% of the OHS maximum. We also find that the eddy-induced MOC weakens, primarily caused by a buoyancy flux change as a result of the direct CO2 effect, and does not compensate the intensified Deacon cell.

2013 ◽  
Vol 9 (4) ◽  
pp. 1495-1504 ◽  
Author(s):  
Z.-S. Zhang ◽  
K. H. Nisancioglu ◽  
M. A. Chandler ◽  
A. M. Haywood ◽  
B. L. Otto-Bliesner ◽  
...  

Abstract. In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high-latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.


2013 ◽  
Vol 9 (2) ◽  
pp. 1297-1319 ◽  
Author(s):  
Z.-S. Zhang ◽  
K. H. Nisancioglu ◽  
M. A. Chandler ◽  
A. M. Haywood ◽  
B. L. Otto-Bliesner ◽  
...  

Abstract. In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in the PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.


2014 ◽  
Vol 5 (1) ◽  
pp. 29-62
Author(s):  
D. Ehlert ◽  
A. Levermann

Abstract. The Atlantic meridional overturning circulation (AMOC) carries large amounts of heat into the North Atlantic influencing climate regionally as well as globally. Paleorecords and simulations with comprehensive climate models suggest that the positive salt-advection feedback may yield a threshold behaviour of the system. That is to say that beyond a certain amount of freshwater flux into the North Atlantic, no meridional overturning circulation can be sustained. Concepts of monitoring the AMOC and identifying its vicinity to the threshold rely on the fact that the volume flux defining the AMOC will be reduced when approaching the threshold. Here we advance conceptual models that have been used in a paradigmatic way to understand the AMOC, by introducing a density-dependent parameterization for the Southern Ocean eddies. This additional degree of freedom uncovers a mechanism by which the AMOC can increase with additional freshwater flux into the North Atlantic, before it reaches the threshold and collapses: an AMOC that is mainly wind-driven will have a constant upwelling as long as the Southern Ocean winds do not change significantly. The downward transport of tracers occurs either in the northern sinking regions or through Southern Ocean eddies. If freshwater is transported, either atmospherically or via horizontal gyres, from the low- to high-latitudes, this would reduce the eddy transport and by continuity increase the northern sinking which defines the AMOC until a threshold is reached at which the AMOC cannot be sustained. If dominant in the real ocean this mechanism would have significant consequences for monitoring the AMOC.


2014 ◽  
Vol 5 (2) ◽  
pp. 383-397
Author(s):  
D. Ehlert ◽  
A. Levermann

Abstract. The Atlantic meridional overturning circulation (AMOC) carries large amounts of heat into the North Atlantic influencing climate regionally as well as globally. Palaeo-records and simulations with comprehensive climate models suggest that the positive salt-advection feedback may yield a threshold behaviour of the system. That is to say that beyond a certain amount of freshwater flux into the North Atlantic, no meridional overturning circulation can be sustained. Concepts of monitoring the AMOC and identifying its vicinity to the threshold rely on the fact that the volume flux defining the AMOC will be reduced when approaching the threshold. Here we advance conceptual models that have been used in a paradigmatic way to understand the AMOC, by introducing a density-dependent parameterization for the Southern Ocean eddies. This additional degree of freedom uncovers a mechanism by which the AMOC can increase with additional freshwater flux into the North Atlantic, before it reaches the threshold and collapses: an AMOC that is mainly wind-driven will have a constant upwelling as long as the Southern Ocean winds do not change significantly. The downward transport of tracers occurs either in the northern sinking regions or through Southern Ocean eddies. If freshwater is transported, either atmospherically or via horizontal gyres, from the low to high latitudes, this would reduce the eddy transport and by continuity increase the northern sinking which defines the AMOC until a threshold is reached at which the AMOC cannot be sustained. If dominant in the real ocean this mechanism would have significant consequences for monitoring the AMOC.


2020 ◽  
Author(s):  
Emma L. Worthington ◽  
Ben I. Moat ◽  
David A. Smeed ◽  
Jennifer V. Mecking ◽  
Robert Marsh ◽  
...  

Abstract. A decline in Atlantic meridional overturning circulation (AMOC) strength has been observed between 2004 and 2012 by the RAPID array with this weakened state of the AMOC persisting until 2017. Climate model and paleo-oceanographic research suggests that the AMOC may have been declining for decades or even centuries before this, however direct observations are sparse prior to 2004, giving only snapshots of the overturning circulation. Previous studies have used linear models based on upper layer temperature anomalies to extend AMOC estimates back in time, however these ignore changes in the deep circulation that are beginning to emerge in the observations of AMOC decline. Here we develop a higher fidelity empirical model of AMOC variability based on RAPID data, and associated physically with changes in thickness of the persistent upper, intermediate and deep water masses at 26° N and associated transports. We applied historical hydrographic data to the empirical model to create an AMOC time series extending from 1981 to 2016. Increasing the resolution of the observed AMOC to approximately annual shows multi-annual variability in agreement with RAPID observations, and that the downturn between 2008 and 2012 was the weakest AMOC since the mid-1980s. However, the time series shows no overall AMOC decline as indicated by other proxies and high resolution climate models. Our results reinforce that adequately capturing changes to the deep circulation is key to detecting any anthropogenic climate change-related AMOC decline.


2020 ◽  
Vol 33 (8) ◽  
pp. 3125-3149 ◽  
Author(s):  
Shantong Sun ◽  
Ian Eisenman ◽  
Laure Zanna ◽  
Andrew L. Stewart

AbstractPaleoclimate proxy evidence suggests that the Atlantic meridional overturning circulation (AMOC) was about 1000 m shallower at the Last Glacial Maximum (LGM) compared to the present. Yet it remains unresolved what caused this glacial shoaling of the AMOC, and many climate models instead simulate a deeper AMOC under LGM forcing. While some studies suggest that Southern Ocean surface buoyancy forcing controls the AMOC depth, others have suggested alternatively that North Atlantic surface forcing or interior diabatic mixing plays the dominant role. To investigate the key processes that set the AMOC depth, here we carry out a number of MITgcm ocean-only simulations with surface forcing fields specified from the simulation results of three coupled climate models that span much of the range of glacial AMOC depth changes in phase 3 of the Paleoclimate Model Intercomparison Project (PMIP3). We find that the MITgcm simulations successfully reproduce the changes in AMOC depth between glacial and modern conditions simulated in these three PMIP3 models. By varying the restoring time scale in the surface forcing, we show that the AMOC depth is more strongly constrained by the surface density field than the surface buoyancy flux field. Based on these results, we propose a mechanism by which the surface density fields in the high latitudes of both hemispheres are connected to the AMOC depth. We illustrate the mechanism using MITgcm simulations with idealized surface forcing perturbations as well as an idealized conceptual geometric model. These results suggest that the AMOC depth is largely determined by the surface density fields in both the North Atlantic and the Southern Ocean.


2021 ◽  
Author(s):  
Emma Worthington ◽  
Ben Moat ◽  
David Smeed ◽  
Jennifer Mecking ◽  
Robert Marsh ◽  
...  

<p>A decline in Atlantic meridional overturning circulation (AMOC) strength has been observed between 2004 and 2012 by the RAPID array with this weakened state of the AMOC persisting until 2017. Climate model and paleo-oceanographic re-search suggests that the AMOC may have been declining for decades or even centuries before this, however direct observations are sparse prior to 2004, giving only ‘snapshots’ of the overturning circulation. Previous studies have used linear models based on upper layer temperature anomalies to extend AMOC estimates back in time, however these ignore changes in the deep circulation that are beginning to emerge in the observations of AMOC decline. Here we develop a higher fidelity empirical model of AMOC variability based on RAPID data, and associated physically with changes in thickness of the persistent upper, intermediate and deep water masses at 26°N and associated transports. We applied historical hydrographic data to the empirical model to create an AMOC time series extending from 1981 to 2016. Increasing the resolution of the observed AMOC toapproximately annual shows multi-annual variability in agreement with RAPID observations, and that the downturn between 2008 and 2012 was the weakest AMOC since the mid-1980s. However, the time series shows no overall AMOC decline asindicated by other proxies and high resolution climate models. Our results reinforce that adequately capturing changes to thedeep circulation is key to detecting any anthropogenic climate change-related AMOC decline</p>


2013 ◽  
Vol 26 (20) ◽  
pp. 8017-8036 ◽  
Author(s):  
Peter T. Spooner ◽  
Helen L. Johnson ◽  
Tim J. Woollings

Abstract Coupled climate models predict density-driven weakening of the Atlantic meridional overturning circulation (AMOC) under greenhouse gas forcing, with considerable spread in the response between models. There is also a large spread in the predicted increase of the southern annular mode (SAM) index across these models. Regression analysis across model space using 11 non-eddy-resolving models suggests that up to 35% of the intermodel spread in the AMOC response may be associated with uncertainty in the magnitude of the increase in the SAM. Models with a large, positive SAM index response generally display a smaller weakening of the AMOC under greenhouse gas forcing. The initial AMOC strength is also a major cause of intermodel spread in its response to climate change. The increase in the SAM acts to reduce the weakening of the AMOC over the next century by around ⅓, through increases in wind stress over the Southern Ocean, northward Ekman transport, and upwelling around Antarctica. The SAM response is also related to an increase in the northward salt flux across 30°S and to salinity anomalies in the high-latitude North Atlantic. These provide a positive feedback by further reinforcement of the AMOC. The results suggest that, compared with the real ocean where eddies oppose wind-driven changes in Southern Ocean circulation, climate models underestimate the effects of anthropogenic climate change on the AMOC.


2020 ◽  
Author(s):  
Susan Lozier ◽  
Matthew Menary ◽  
Laura Jackson

<p>The AMOC (Atlantic Meridional Overturning Circulation) is a key driver of climate change and variability. Since continuous, direct measurements of the overturning strength in the North Atlantic subpolar gyre (SPG) have been unavailable until recently, the understanding, based largely on climate models, is that the Labrador Sea has an important role in shaping the evolution of the AMOC. However, a recent high profile observational campaign (Overturning in the Subpolar North Atlantic, OSNAP) has called into question the importance of the Labrador Sea, and hence of the credibility of the AMOC representation in climate models. Here, we reconcile these viewpoints by comparing the OSNAP data with a new, high-resolution coupled climate model: HadGEM3-GC3.1-MM. Unlike many previous models, we find our model compares well to the OSNAP overturning observations. Furthermore, overturning variability across the eastern OSNAP section (OSNAP-E), and not in the Labrador Sea region, appears linked to AMOC variability further south. Labrador Sea densities are shown to be an important indicator of downstream AMOC variability, but these densities are driven by upstream variability across OSNAP-E rather than local processes in the Labrador Sea.</p>


2007 ◽  
Vol 20 (24) ◽  
pp. 5912-5928 ◽  
Author(s):  
Thomas F. Stocker ◽  
Axel Timmermann ◽  
Manuel Renold ◽  
Oliver Timm

Abstract Freshwater hosing experiments with a comprehensive coupled climate model and a coupled model of intermediate complexity are performed with and without global salt compensation in order to investigate the robustness of the bipolar seesaw. In both cases, a strong reduction of the Atlantic meridional overturning circulation is induced, and a warming in the South Atlantic results. When a globally uniform salt flux is applied at the surface in order to keep the global mean salinity constant, this causes additional widespread warming in the Southern Ocean. It is shown that this warming is mainly due to heat transport anomalies that are induced by the specific parameterization in ocean models to represent eddy mixing. Surface salt fluxes tend to move outcropping isopycnals equatorward. As the density perturbation originates at the surface, changes in isopycnal slopes are generated that lead to anomalies in the bolus velocity field. The associated bolus heat flux convergence creates a warming enhancing the bipolar seesaw response, particularly in the Southern Ocean. The importance of this mechanism is illustrated in coupled model simulations in which this parameterization in the ocean model component is switched on or off. Additional experiments in which the same total amount of freshwater is delivered at rates 10 times smaller show that the effect of the global salt compensation is not important in this case, but that the eddy-mixing parameterization is still responsible for a substantial temperature response in the Southern Ocean.


Sign in / Sign up

Export Citation Format

Share Document