scholarly journals Characterizing the North American Monsoon in the Community Atmosphere Model: Sensitivity to Resolution and Topography

2019 ◽  
Vol 32 (23) ◽  
pp. 8355-8372 ◽  
Author(s):  
Arianna M. Varuolo-Clarke ◽  
Kevin A. Reed ◽  
Brian Medeiros

Abstract This work examines the effect of horizontal resolution and topography on the North American monsoon (NAM) in experiments with an atmospheric general circulation model. Observations are used to evaluate the fidelity of the representation of the monsoon in simulations from the Community Atmosphere Model version 5 (CAM5) with a standard 1.0° grid spacing and a high-resolution 0.25° grid spacing. The simulated monsoon has some realistic features, but both configurations also show precipitation biases. The default 1.0° grid spacing configuration simulates a monsoon with an annual cycle and intensity of precipitation within the observational range, but the monsoon begins and ends too gradually and does not reach far enough north. This study shows that the improved representation of topography in the high-resolution (0.25° grid spacing) configuration improves the regional circulation and therefore some aspects of the simulated monsoon compared to the 1.0° counterpart. At higher resolution, CAM5 simulates a stronger low pressure center over the American Southwest, with more realistic low-level wind flow than in the 1.0° configuration. As a result, the monsoon precipitation increases as does the amplitude of the annual cycle of precipitation. A moisture analysis sheds light on the monsoon dynamics, indicating that changes in the advection of enthalpy and moist static energy drive the differences between monsoon precipitation in CAM5 1.0° compared to the 0.25° configuration. Additional simulations confirm that these improvements are mainly due to the topographic influence on the low-level flow through the Gulf of California, and not only the increase in horizontal resolution.

2009 ◽  
Vol 22 (24) ◽  
pp. 6716-6740 ◽  
Author(s):  
D. S. Gutzler ◽  
L. N. Long ◽  
J. Schemm ◽  
S. Baidya Roy ◽  
M. Bosilovich ◽  
...  

Abstract The second phase of the North American Monsoon Experiment (NAME) Model Assessment Project (NAMAP2) was carried out to provide a coordinated set of simulations from global and regional models of the 2004 warm season across the North American monsoon domain. This project follows an earlier assessment, called NAMAP, that preceded the 2004 field season of the North American Monsoon Experiment. Six global and four regional models are all forced with prescribed, time-varying ocean surface temperatures. Metrics for model simulation of warm season precipitation processes developed in NAMAP are examined that pertain to the seasonal progression and diurnal cycle of precipitation, monsoon onset, surface turbulent fluxes, and simulation of the low-level jet circulation over the Gulf of California. Assessment of the metrics is shown to be limited by continuing uncertainties in spatially averaged observations, demonstrating that modeling and observational analysis capabilities need to be developed concurrently. Simulations of the core subregion (CORE) of monsoonal precipitation in global models have improved since NAMAP, despite the lack of a proper low-level jet circulation in these simulations. Some regional models run at higher resolution still exhibit the tendency observed in NAMAP to overestimate precipitation in the CORE subregion; this is shown to involve both convective and resolved components of the total precipitation. The variability of precipitation in the Arizona/New Mexico (AZNM) subregion is simulated much better by the regional models compared with the global models, illustrating the importance of transient circulation anomalies (prescribed as lateral boundary conditions) for simulating precipitation in the northern part of the monsoon domain. This suggests that seasonal predictability derivable from lower boundary conditions may be limited in the AZNM subregion.


2013 ◽  
Vol 26 (22) ◽  
pp. 8787-8801 ◽  
Author(s):  
Kerrie L. Geil ◽  
Yolande L. Serra ◽  
Xubin Zeng

Abstract Precipitation, geopotential height, and wind fields from 21 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are examined to determine how well this generation of general circulation models represents the North American monsoon system (NAMS). Results show no improvement since CMIP3 in the magnitude (root-mean-square error and bias) of the mean annual cycle of monthly precipitation over a core monsoon domain, but improvement in the phasing of the seasonal cycle in precipitation is notable. Monsoon onset is early for most models but is clearly visible in daily climatological precipitation, whereas monsoon retreat is highly variable and unclear in daily climatological precipitation. Models that best capture large-scale circulation patterns at a low level usually have realistic representations of the NAMS, but even the best models poorly represent monsoon retreat. Difficulty in reproducing monsoon retreat results from an inaccurate representation of gradients in low-level geopotential height across the larger region, which causes an unrealistic flux of low-level moisture from the tropics into the NAMS region that extends well into the postmonsoon season. Composites of the models with the best and worst representations of the NAMS indicate that adequate representation of the monsoon during the early to midseason can be achieved even with a large-scale circulation pattern bias, as long as the bias is spatially consistent over the larger region influencing monsoon development; in other words, as with monsoon retreat, it is the inaccuracy of the spatial gradients in geopotential height across the larger region that prevents some models from realistic representation of the early and midseason monsoon system.


2007 ◽  
Vol 135 (9) ◽  
pp. 3098-3117 ◽  
Author(s):  
Peter J. Rogers ◽  
Richard H. Johnson

Abstract Gulf surges are disturbances that move northward along the Gulf of California (GOC), frequently advecting cool, moist air from the GOC or eastern tropical Pacific Ocean into the deserts of the southwest United States and northwest Mexico during the North American Monsoon (NAM). Little attention has been given to the dynamics of these disturbances because of the lack of reliable high-resolution data across the NAM region. High temporal and spatial observations collected during the 2004 North American Monsoon Experiment are used to investigate the structure and dynamical mechanisms of a significant gulf surge on 13–14 July 2004. Integrated Sounding Systems deployed along the east coast of the GOC and an enhanced network of rawinsonde sites across the NAM region are used in this study. Observations show that the 13–14 July gulf surge occurred in two primary stages. The first stage was preceded by anomalous low-level warming along the northern GOC on 13 July. Sharp cooling, moistening, and increased low-level south-southeasterly flow followed over a 12–18-h period. Over the northern gulf, the wind reached ∼20 m s−1 at 750 m AGL. Then there was a brief respite followed by the second stage—a similar, but deeper acceleration of the southerly flow associated with the passage of Tropical Storm (TS) Blas on 14 July. The initial surge disturbance traversed the GOC at a speed of ∼17–25 m s−1 and resulted in a deepening of the mixed layer along the northern gulf. Dramatic surface pressure rises also accompanied the surge. The weight of the evidence suggests that the first stage of the overall surge itself consisted of two parts. The initial part resembled borelike disturbances initiated by convective downdrafts impinging on the low-level stable layer over the region. The secondary part was characteristic of a Kelvin wave–type disturbance, as evident in the deeper layer of sharp cooling and strong wind that ensued. Another possible explanation for the first part is that the leading edge of this Kelvin wave steepened nonlinearly into a borelike disturbance. The second stage of the surge was associated with the increased circulation around TS Blas.


2011 ◽  
Vol 24 (11) ◽  
pp. 2771-2783 ◽  
Author(s):  
Ruth Cerezo-Mota ◽  
Myles Allen ◽  
Richard Jones

Abstract Key mechanisms important for the simulation and better understanding of the precipitation of the North American monsoon (NAM) were analyzed in this paper. Three experiments with the Providing Regional Climates for Impacts Studies (PRECIS) regional climate model, the Hadley Centre Regional Model version 3P (HadRM3P), driven by different boundary conditions were carried out. After a detailed analysis of the moisture and low-level winds derived from the models, the authors conclude that the Gulf of Mexico (GoM) moisture and the Great Plains low-level jet (GPLLJ) play an important role in the northern portion of the NAM. Moreover, the realistic simulation of these features is necessary for a better simulation of precipitation in the NAM. Previous works suggest that the influence of moisture from the GoM in Arizona–New Mexico (AZNM) takes place primarily via the middle- and upper-tropospheric flow (above 700 mb). However, it is shown here that if the GoM does not supply enough moisture and the GPLLJ at lower levels (below 700 mb) does not reach the AZNM region, then a dry westerly flow dominates that area and the summer precipitation is below normal. The implications of these findings for studies of climate change are demonstrated with the analysis of two general circulation models (GCMs) commonly used for climate change prediction, which are shown not to reproduce correctly the GPLLJ intensity nor the moisture in the GoM. This implies that the precipitation in AZNM would not be correctly represented by a regional model driven by these GCMs.


2016 ◽  
Vol 17 (7) ◽  
pp. 1915-1927 ◽  
Author(s):  
Francina Dominguez ◽  
Gonzalo Miguez-Macho ◽  
Huancui Hu

Abstract The regional atmospheric Weather Research and Forecasting (WRF) Model with water vapor tracer diagnostics (WRF-WVT) is used to quantify the water vapor from different oceanic and terrestrial regions that contribute to precipitation during the North American monsoon (NAM) season. The 10-yr (2004–13) June–October simulations with 20-km horizontal resolution were driven by North American Regional Reanalysis data. Results show that lower-level moisture comes predominantly from the Gulf of California and is the most important source of precipitation. Upper-level (above 800 mb) southeasterly moisture originates from the Gulf of Mexico and Sierra Madre Occidental to the east. Moisture from within the NAM region (local recycling) is the second-most important precipitation source, as the local atmospheric moisture is very efficiently converted into precipitation. However, WRF-WVT overestimates precipitation and evapotranspiration in the NAM region, particularly over the mountainous terrain. Direct comparisons with moisture source analysis using the extended dynamic recycling model (DRM) reveal that the simple model fails to correctly backtrack moisture in this region of strong vertical wind shear. Furthermore, the assumption of a well-mixed atmosphere causes the simple model to significantly underestimate local recycling. However, the direct comparison with WRF-WVT can be used to guide future DRM improvements.


2007 ◽  
Vol 20 (9) ◽  
pp. 1843-1861 ◽  
Author(s):  
J. Craig Collier ◽  
Guang J. Zhang

Abstract Simulation of the North American monsoon system by the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM3) is evaluated in its sensitivity to increasing horizontal resolution. For two resolutions, T42 and T85, rainfall is compared to Tropical Rainfall Measuring Mission (TRMM) satellite-derived and surface gauge-based rainfall rates over the United States and northern Mexico as well as rainfall accumulations in gauges of the North American Monsoon Experiment (NAME) Enhanced Rain Gauge Network (NERN) in the Sierra Madre Occidental. Simulated upper-tropospheric mass and wind fields are compared to those from NCEP–NCAR reanalyses. The comparison presented herein demonstrates that tropospheric motions associated with the North American monsoon system are sensitive to increasing the horizontal resolution of the model. An increase in resolution from T42 to T85 results in changes to a region of large-scale midtropospheric descent found north and east of the monsoon anticyclone. Relative to its simulation at T42, this region extends farther south and west at T85. Additionally, at T85, the subsidence is stronger. Consistent with the differences in large-scale descent, the T85 simulation of CAM3 is anomalously dry over Texas and northeastern Mexico during the peak monsoon months. Meanwhile, the geographic distribution of rainfall over the Sierra Madre Occidental region of Mexico is more satisfactorily simulated at T85 than at T42 for July and August. Moisture import into this region is greater at T85 than at T42 during these months. A focused study of the Sierra Madre Occidental region in particular shows that, in the regional-average sense, the timing of the peak of the monsoon is relatively insensitive to the horizontal resolution of the model, while a phase bias in the diurnal cycle of monsoon season precipitation is somewhat reduced in the higher-resolution run. At both resolutions, CAM3 poorly simulates the month-to-month evolution of monsoon rainfall over extreme northwestern Mexico and Arizona, though biases are considerably improved at T85.


2004 ◽  
Vol 31 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Simona Bordoni ◽  
Paul E. Ciesielski ◽  
Richard H. Johnson ◽  
Brian D. McNoldy ◽  
Bjorn Stevens

2011 ◽  
Vol 24 (3) ◽  
pp. 653-673 ◽  
Author(s):  
Steven C. Chan ◽  
Vasubandhu Misra

Abstract The June–September (JJAS) 2000–07 NCEP coupled Climate Forecasting System (CFS) global hindcasts are downscaled over the North and South American continents with the NCEP–Scripps Regional Spectral Model (RSM) with anomaly nesting (AN) and without bias correction (control). A diagnosis of the North American monsoon (NAM) in CFS and RSM hindcasts is presented here. RSM reduces errors caused by coarse resolution but is unable to address larger-scale CFS errors even with bias correction. CFS has relatively weak Great Plains and Gulf of California low-level jets. Low-level jets are strengthened from downscaling, especially after AN bias correction. The RSM NAM hydroclimate shares similar flaws with CFS, with problematic diurnal and seasonal variability. Flaws in both diurnal and monthly variability are forced by erroneous convection-forced divergence outside the monsoon core region in eastern and southern Mexico. NCEP reanalysis shows significant seasonal variability errors, and AN shows little improvement in regional-scale flow errors. The results suggest that extreme caution must be taken when the correction is applied relative to reanalyses. Analysis also shows that North American Regional Reanalysis (NARR) NAM seasonal variability has benefited from precipitation data assimilation, but many questions remain concerning NARR’s representation of NAM.


2006 ◽  
Vol 19 (3) ◽  
pp. 333-343 ◽  
Author(s):  
David J. Lorenz ◽  
Dennis L. Hartmann

Abstract The effect of the Madden–Julian oscillation (MJO) in the eastern Pacific on the North American monsoon is documented using NCEP–NCAR reanalysis and daily mean precipitation data from 1958 to 2003. It is found that positive zonal wind anomalies in the eastern tropical Pacific lead to above-normal precipitation in northwest Mexico and Arizona from several days to over a week later. This connection between the tropical Pacific and monsoon precipitation appears to be limited to regions influenced by moisture surges from the Gulf of California as a similar connection does not exist for New Mexico precipitation. The evidence suggests that the MJO might affect monsoon precipitation by modulating the strength of low-level easterly waves off the coast of Mexico, which in turn triggers the development of a gulf surge.


Sign in / Sign up

Export Citation Format

Share Document