scholarly journals Constraining Uncertainties in CMIP5 Projections of September Arctic Sea Ice Extent with Observations

2020 ◽  
Vol 33 (4) ◽  
pp. 1487-1503 ◽  
Author(s):  
Daniel Senftleben ◽  
Axel Lauer ◽  
Alexey Karpechko

AbstractIn agreement with observations, Earth system models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) simulate a decline in September Arctic sea ice extent (SIE) over the past decades. However, the spread in their twenty-first-century SIE projections is large and the timing of the first ice-free Arctic summer ranges from 2020 to beyond 2100. The uncertainties arise from three sources (internal variability, model uncertainty, and scenario uncertainty), which are quantified in this study for projections of SIE. The goal is to narrow uncertainties by applying multiple diagnostic ensemble regression (MDER). MDER links future projections of sea ice extent to processes relevant to its simulation under present-day conditions using data covering the past 40 years. With this method, we can reduce model uncertainty in projections of SIE for the period 2020–44 by 30%–50% (0.8–1.3 million km2). Compared to the unweighted multimodel mean, the MDER-weighted mean projects an about 20% smaller SIE and an earlier near-disappearance of Arctic sea ice by more than a decade for a high–greenhouse gas scenario. We also show that two different methods estimating internal variability in SIE differ by 1 million km2. Regardless, the total uncertainties in the SIE projections remain large (up to 3.5 million km2, with irreducible internal variability contributing 30%) so that a precise time estimate of an ice-free Arctic proves impossible. We conclude that unweighted CMIP5 multimodel-mean projections of Arctic SIE are too optimistic and mitigation strategies to reduce Arctic warming need to be intensified.

2021 ◽  
Vol 34 (9) ◽  
pp. 3609-3627
Author(s):  
Zili Shen ◽  
Anmin Duan ◽  
Dongliang Li ◽  
Jinxiao Li

AbstractThe capability of 36 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6) and their 24 CMIP5 counterparts in simulating the mean state and variability of Arctic sea ice cover for the period 1979–2014 is evaluated. In addition, a sea ice cover performance score for each CMIP5 and CMIP6 model is provided that can be used to reduce the spread in sea ice projections through applying weighted averages based on the ability of models to reproduce the historical sea ice state. Results show that the seasonal cycle of the Arctic sea ice extent (SIE) in the multimodel ensemble (MME) mean of the CMIP6 simulations agrees well with observations, with a MME mean error of less than 15% in any given month relative to the observations. CMIP6 has a smaller intermodel spread in climatological SIE values during summer months than its CMIP5 counterpart. In terms of the monthly SIE trends, the CMIP6 MME mean shows a substantial reduction in the positive bias relative to the observations compared with that of CMIP5. The spread of September SIE trends is very large, not only across different models but also across different ensemble members of the same model, indicating a strong influence of internal variability on SIE evolution. Based on the assumptions that the simulations of CMIP6 models are from the same distribution and that models have no bias in response to external forcing, we can infer that internal variability contributes to approximately 22% ± 5% of the September SIE trend over the period 1979–2014.


2012 ◽  
Vol 7 (3) ◽  
pp. 034011 ◽  
Author(s):  
J J Day ◽  
J C Hargreaves ◽  
J D Annan ◽  
A Abe-Ouchi

2012 ◽  
Vol 25 (5) ◽  
pp. 1431-1452 ◽  
Author(s):  
Alexandra Jahn ◽  
Kara Sterling ◽  
Marika M. Holland ◽  
Jennifer E. Kay ◽  
James A. Maslanik ◽  
...  

To establish how well the new Community Climate System Model, version 4 (CCSM4) simulates the properties of the Arctic sea ice and ocean, results from six CCSM4 twentieth-century ensemble simulations are compared here with the available data. It is found that the CCSM4 simulations capture most of the important climatological features of the Arctic sea ice and ocean state well, among them the sea ice thickness distribution, fraction of multiyear sea ice, and sea ice edge. The strongest bias exists in the simulated spring-to-fall sea ice motion field, the location of the Beaufort Gyre, and the temperature of the deep Arctic Ocean (below 250 m), which are caused by deficiencies in the simulation of the Arctic sea level pressure field and the lack of deep-water formation on the Arctic shelves. The observed decrease in the sea ice extent and the multiyear ice cover is well captured by the CCSM4. It is important to note, however, that the temporal evolution of the simulated Arctic sea ice cover over the satellite era is strongly influenced by internal variability. For example, while one ensemble member shows an even larger decrease in the sea ice extent over 1981–2005 than that observed, two ensemble members show no statistically significant trend over the same period. It is therefore important to compare the observed sea ice extent trend not just with the ensemble mean or a multimodel ensemble mean, but also with individual ensemble members, because of the strong imprint of internal variability on these relatively short trends.


2014 ◽  
Vol 8 (1) ◽  
pp. 1383-1406 ◽  
Author(s):  
P. J. Hezel ◽  
T. Fichefet ◽  
F. Massonnet

Abstract. Almost all global climate models and Earth system models that participated in the Coupled Model Intercomparison Project 5 (CMIP5) show strong declines in Arctic sea ice extent and volume under the highest forcing scenario of the Radiative Concentration Pathways (RCPs) through 2100, including a transition from perennial to seasonal ice cover. Extended RCP simulations through 2300 were completed for a~subset of models, and here we examine the time evolution of Arctic sea ice in these simulations. In RCP2.6, the summer Arctic sea ice extent increases compared to its minimum following the peak radiative forcing in 2044 in all 9 models. RCP4.5 demonstrates continued summer Arctic sea ice decline due to continued warming on longer time scales. These two scenarios imply that summer sea ice extent could begin to recover if and when radiative forcing from greenhouse gas concentrations were to decrease. In RCP8.5 the Arctic Ocean reaches annually ice-free conditions in 7 of 9 models. The ensemble of simulations completed under the extended RCPs provide insight into the global temperature increase at which sea ice disappears in the Arctic and reversibility of declines in seasonal sea ice extent.


2019 ◽  
Vol 100 (1) ◽  
pp. S43-S48 ◽  
Author(s):  
Juan C. Acosta Navarro ◽  
Pablo Ortega ◽  
Javier García-Serrano ◽  
Virginie Guemas ◽  
Etienne Tourigny ◽  
...  

2015 ◽  
Vol 112 (15) ◽  
pp. 4570-4575 ◽  
Author(s):  
Rong Zhang

Satellite observations reveal a substantial decline in September Arctic sea ice extent since 1979, which has played a leading role in the observed recent Arctic surface warming and has often been attributed, in large part, to the increase in greenhouse gases. However, the most rapid decline occurred during the recent global warming hiatus period. Previous studies are often focused on a single mechanism for changes and variations of summer Arctic sea ice extent, and many are based on short observational records. The key players for summer Arctic sea ice extent variability at multidecadal/centennial time scales and their contributions to the observed summer Arctic sea ice decline are not well understood. Here a multiple regression model is developed for the first time, to the author’s knowledge, to provide a framework to quantify the contributions of three key predictors (Atlantic/Pacific heat transport into the Arctic, and Arctic Dipole) to the internal low-frequency variability of Summer Arctic sea ice extent, using a 3,600-y-long control climate model simulation. The results suggest that changes in these key predictors could have contributed substantially to the observed summer Arctic sea ice decline. If the ocean heat transport into the Arctic were to weaken in the near future due to internal variability, there might be a hiatus in the decline of September Arctic sea ice. The modeling results also suggest that at multidecadal/centennial time scales, variations in the atmosphere heat transport across the Arctic Circle are forced by anticorrelated variations in the Atlantic heat transport into the Arctic.


2011 ◽  
Vol 38 (9-10) ◽  
pp. 2099-2113 ◽  
Author(s):  
Matthew E. Higgins ◽  
John J. Cassano

2018 ◽  
Vol 12 (12) ◽  
pp. 3747-3757 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Xiao Cheng ◽  
Jiping Liu ◽  
Fengming Hui

Abstract. The Arctic sea ice extent throughout the melt season is closely associated with initial sea ice state in winter and spring. Sea ice leads are important sites of energy fluxes in the Arctic Ocean, which may play an important role in the evolution of Arctic sea ice. In this study, we examine the potential of sea ice leads as a predictor for summer Arctic sea ice extent forecast using a recently developed daily sea ice lead product retrieved from the Moderate-Resolution Imaging Spectroradiometer (MODIS). Our results show that July pan-Arctic sea ice extent can be predicted from the area of sea ice leads integrated from midwinter to late spring, with a prediction error of 0.28 million km2 that is smaller than the standard deviation of the observed interannual variability. However, the predictive skills for August and September pan-Arctic sea ice extent are very low. When the area of sea ice leads integrated in the Atlantic and central and west Siberian sector of the Arctic is used, it has a significantly strong relationship (high predictability) with both July and August sea ice extent in the Atlantic and central and west Siberian sector of the Arctic. Thus, the realistic representation of sea ice leads (e.g., the areal coverage) in numerical prediction systems might improve the skill of forecast in the Arctic region.


Sign in / Sign up

Export Citation Format

Share Document