scholarly journals Could the North Pacific Oscillation Be Modified by the Initiation of the East Asian Winter Monsoon?

2020 ◽  
Vol 33 (6) ◽  
pp. 2389-2406
Author(s):  
Yu-heng Tseng ◽  
Ruiqiang Ding ◽  
Sen Zhao ◽  
Yi-chun Kuo ◽  
Yu-chiao Liang

AbstractThis study investigates the modulation of North Pacific Oscillation (NPO) variability upon initiation of the East Asian winter monsoon (EAWM). The data show that the initiation of EAWM in the Philippine Sea strongly connects to the southern lobe variability of the NPO in January followed by a basin-scale oceanic Victoria mode pattern. No apparent connection was found for the northern lobe of the NPO when the ENSO signals are removed. The strengthening of the EAWM in November interacts with the Kuroshio front and generates a low-level heating source in the Philippine Sea. Significant Rossby wave sources are then formed in the lower to midtroposphere. Wave ray tracing analyses confirm the atmospheric teleconnection established by the Rossby wave propagation in the mid- to upper troposphere. Analyses of the origin of wave trajectories from the Philippine Sea show a clear eastward propagating pathway that affects the southern lobe of the NPO from the southern lobe of the western Pacific pattern at 500 hPa and above on the time scale of 20 days. No ray trajectories from the lower troposphere can propagate eastward to influence the central-eastern subtropical Pacific. The wave propagation process is further supported by the coupled model experiments.

2014 ◽  
Vol 27 (21) ◽  
pp. 8185-8204 ◽  
Author(s):  
Gyundo Pak ◽  
Young-Hyang Park ◽  
Frederic Vivier ◽  
Young-Oh Kwon ◽  
Kyung-Il Chang

Abstract The East Asian winter monsoon (EAWM) and the North Pacific Oscillation (NPO) constitute two outstanding surface atmospheric circulation patterns affecting the winter sea surface temperature (SST) variability in the western North Pacific. The present analyses show the relationship between the EAWM and NPO and their impact on the SST are nonstationary and regime-dependent with a sudden change around 1988. These surface circulation patterns are tightly linked to the upper-level Ural and Kamchatka blockings, respectively. During the 1973–87 strong winter monsoon epoch, the EAWM and NPO were significantly correlated to each other, but their correlation practically vanishes during the 1988–2002 weak winter monsoon epoch. This nonstationary relationship is related to the pronounced decadal weakening of the Siberian high system over the Eurasian continent after the 1988 regime shift as well as the concomitant positive NPO-like dipole change and its eastward migration in tropospheric circulation over the North Pacific. There is a tight tropical–extratropical teleconnection in the western North Pacific in the strong monsoon epoch, which disappears in the weak monsoon epoch when there is a significant eastward shift of tropical influence and enhanced storm tracks into the eastern North Pacific. A tentative mechanism of the nonstationary relationship between the EAWM and NPO is proposed, stressing the pivotal role played in the above teleconnection by a decadal shift of the East Asian trough resulting from the abrupt decline of the EAWM since the late 1980s.


2020 ◽  
Vol 33 (24) ◽  
pp. 10671-10690
Author(s):  
Tianjiao Ma ◽  
Wen Chen ◽  
Hans-F. Graf ◽  
Shuoyi Ding ◽  
Peiqiang Xu ◽  
...  

AbstractThe present study investigates different impacts of the East Asian winter monsoon (EAWM) on surface air temperature (Ts) in North America (NA) during ENSO and neutral ENSO episodes. In neutral ENSO years, the EAWM shows a direct impact on the Ts anomalies in NA on an interannual time scale. Two Rossby wave packets appear over the Eurasian–western Pacific (upstream) and North Pacific–NA (downstream) regions associated with a strong EAWM. Further analysis suggests that the downstream wave packet is caused by reflection of the upstream wave packet over the subtropical western Pacific and amplified over the North Pacific. Also, the East Asian subtropical westerly jet stream (EAJS) is intensified in the central and downstream region over the central North Pacific. Hence, increased barotropic kinetic energy conversion and the interaction between transient eddies and the EAJS tend to maintain the circulation anomaly over the North Pacific. Therefore, a strong EAWM tends to result in warm Ts anomalies in northwestern NA via the downstream wave packet emanating from the central North Pacific toward NA. A weak EAWM tends to induce cold Ts anomalies in western-central NA with a smaller magnitude. However, in ENSO years, an anomalous EAJS is mainly confined over East Asia and does not extend into the central North Pacific. The results confirm that the EAWM has an indirect impact on the Ts anomalies in NA via a modulation of the tropical convection anomalies associated with ENSO. Our results indicate that, for seasonal prediction of Ts anomalies in NA, the influence of the EAWM should be taken into account. It produces different responses in neutral ENSO and in ENSO years.


2021 ◽  
pp. 1-57
Author(s):  
Minghao Yang ◽  
Chongyin Li ◽  
Xin Li ◽  
Yanke Tan ◽  
Xiong Chen ◽  
...  

AbstractBased on the daily NCEP reanalysis, the present study investigates the interdecadal change in the relationship between the winter North Pacific storm track (WNPST) and the East Asian winter monsoon (EAWM), and evaluates the WNPST-EAWM relationship in 17 CMIP6 models. The results show that the out-of-phase WNPST-EAWM relationship underwent an interdecadal change in the mid-1980s. The WNPST-EAWM relationship became less significant during P2 (1990-2015). The atmospheric circulation anomaly related to the EAWM during P1 (1955-1980) is more robust than that during P2. The interdecadal weakening WNPST-EAWM relationship may be attributed to the interdecadal damping WNPST-EAWM interaction. The EAWM-related anomalous baroclinic energy conversion and moisture effect, including meridional and vertical eddy moisture fluxes, contribute to the significant attenuation of the WNPST during P1. The transient eddy-induced dynamic forcing and thermal forcing anomalies, as well as the barotropic process represented by the local Eliassen-Palm flux divergence associated with WNPST, can also significantly manipulate the upper-tropospheric jet during P1. However, the atmospheric circulation and interaction between the WNPST and EAWM during P2 are not as significant as those during P1. The effect of ENSO on the WNPST is significantly different before and after the mid-1980s. After the mid-1980s, the WNPST shows the characteristic of moving equatorward during El Niño events. It seems that ENSO takes over the WNPST from the EAWM after the mid-1980s. In addition, except for BCC-ESM1, CanESM5 and SAM0-UNICON, most of the CMIP6 models cannot reproduce the significant out-of-phase WNPST-EAWM relationship.


2009 ◽  
Vol 22 (3) ◽  
pp. 600-614 ◽  
Author(s):  
Lin Wang ◽  
Wen Chen ◽  
Wen Zhou ◽  
Ronghui Huang

Abstract Interannual variations of the East Asian trough (EAT) axis at 500 hPa are studied with the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis data. The associated circulation pattern and pathway of the East Asian winter monsoon (EAWM) with the EAT axis tilt are specially investigated with a trough axis index, which is closely related to the midlatitude baroclinic process and mainly represents the intensity of the eddy-driven jet over the East Asia–North Pacific sector. When the tilt of EAT is smaller than normal, the EAWM prefers to take the southern pathway and less cold air moves to the central North Pacific. However, the EAWM prefers the eastern pathway and brings more cold air to the North Pacific when the tilt of EAT is larger than normal. These differences induce pronounced changes in both the precipitation and the surface air temperature over East and Southeast Asia. Furthermore, the tilt status of the EAT has a significant modulation effect on the regional climate anomalies related to the intensity of the EAWM. The findings suggest an increase in the temperature anomaly associated with the EAWM intensity and a clear northward–southward shift in its pattern in anomalous tilt phase of the EAT. In addition, the modulation tends to be confined mainly to East Asia and expanded to a larger area during the weak and the strong EAWM winters, respectively. The possible reasons for interannual variations of the EAT tilt are discussed, and it is speculated that the midlatitude air–sea interaction in the North Pacific plays a dominant role. This study on the EAT tilt may enrich knowledge of the East Asian winter monsoon beyond the conventional intensity index and may be helpful to improve regional climate prediction in East Asia.


2013 ◽  
Vol 26 (2) ◽  
pp. 622-635 ◽  
Author(s):  
Wen Chen ◽  
Juan Feng ◽  
Renguang Wu

Abstract The present study investigates the roles of El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) in the relationship between the East Asian winter monsoon (EAWM) and the following East Asian summer monsoon (EASM). The variability of the EAWM is divided into an ENSO-related part named EAWMEN and an ENSO-unrelated part named EAWMres. Corresponding to a weak EAWMEN, an anomalous low-level anticyclone forms over the western North Pacific (WNP) and persists from winter to the following summer. This anticyclone enhances southerlies over the coast of East Asia in summer. Hence, a weak EAWMEN tends to be followed by a strong EASM and vice versa. As such, a link is established between the EAWMEN and the EASM. The persistence of this WNP anticyclone may be mainly attributed to the sea surface temperature anomalies associated with the ENSO-related EAWM part in the tropical Indian Ocean and the extratropical North Pacific. In contrast, corresponding to a weak EAWMres, the anomalous WNP anticyclone is only seen in winter, and there is no obvious relationship between the EAWMres and the following EASM. Therefore, the observed EAWM–EASM relationship is dominated by the winter monsoon variability associated with ENSO. It is found that the EAWMEN–EASM relationship is modulated by the PDO. There tends to be a much stronger EASM after a weak EAWMEN during the positive PDO phases than during the negative PDO phases.


2020 ◽  
Vol 33 (2) ◽  
pp. 559-575 ◽  
Author(s):  
Jiapeng Miao ◽  
Tao Wang ◽  
Huijun Wang

AbstractIn this study, focusing on the interdecadal time scale, we investigate the internal variability of the East Asian winter monsoon (EAWM) using output from 19 coupled models’ long-term preindustrial control (piControl) simulations within phase 5 of the Coupled Model Intercomparison Program (CMIP5). In total, we identify 53 cases of significant interdecadal weakening of the EAWM from these 19 piControl simulations. In most weakening cases, both the Siberian high and the East Asian trough are significantly weakened. The East Asian jet stream in the upper troposphere shifts poleward. Southerly wind anomalies are evident over East Asia in the lower troposphere. At the same time, both the Arctic Oscillation (AO) and the North Pacific Oscillation are in their positive phases. Associated anomalous anticyclonic circulation can be found over the North Pacific. Additionally, the North Pacific shows negative Pacific decadal oscillation (PDO)-like sea surface temperature (SST) anomalies. In contrast, we also analyzed 49 cases of significant strengthening of the EAWM, and the atmospheric and oceanic anomalies show opposite signals with the weakening cases. This suggests that internal variabilities of the climate system can also cause interdecadal variations of the EAWM. In addition, the phase shifting of the AO is likely the main reason for the EAWM’s interdecadal variations in the unforced long-term simulations. Further numerical experiments using the Community Atmosphere Model, version 4 (CAM4), deny the causal relationship between the interdecadal variations of EAWM and PDO-like SST anomalies. This study also implies that the internal variabilities of the climate system could contribute to the observed interdecadal weakening of the EAWM around the mid-1980s.


Sign in / Sign up

Export Citation Format

Share Document