scholarly journals On the Efficiency of Baroclinic Eddy Growth and How It Reduces the North Pacific Storm-Track Intensity in Midwinter

2019 ◽  
Vol 32 (23) ◽  
pp. 8373-8398 ◽  
Author(s):  
Sebastian Schemm ◽  
Gwendal Rivière

Abstract This study investigates the efficiency of baroclinic eddy growth in an effort to better understand the suppression of the North Pacific storm-track intensity in winter. The efficiency of baroclinic eddy growth depends on the magnitude and orientation of the vertical tilt of the eddy geopotential isolines. The eddy efficiency is maximized if the orientation of the vertical tilt creates an eddy heat flux that aligns with the mean baroclinicity (defined as minus the temperature gradient divided by a stratification parameter) and if the magnitude of the vertical tilt is neither too strong nor too weak. The eddy efficiency is, in contrast to most other eddy measures, independent of the eddy amplitude and thus useful for improving our mechanistic understanding of the effective eddy growth. During the midwinter suppression, the eddy efficiency is reduced north of 40°N over a region upstream of the main storm track, and baroclinic growth is reduced despite a maximum in baroclinicity. Eulerian diagnostics and feature tracking suggest that the reduction in eddy efficiency is due to a stronger poleward tilt with height of eddies entering the Pacific through the northern seeding branch, which results in a more eastward-oriented eddy heat flux and a reduced alignment with the baroclinicity. The stronger poleward tilt with height is constrained by the eddy propagation direction, which is more equatorward when the subtropical jet moves equatorward in winter. In addition, the westward tilt with height is too strong. South of 40°N, the eddy efficiency increases during midwinter but in a region far away from the main storm track.

2005 ◽  
Vol 5 (3) ◽  
pp. 4223-4256
Author(s):  
G. Nikulin ◽  
A. Karpechko

Abstract. The development of wintertime ozone buildup over the Northern Hemisphere (NH) midlatitudes and its connection with the mean meridional circulation in the stratosphere are examined statistically on a monthly basis from October to March (1980–2002). The ozone buildup begins locally in October with positive ozone tendencies over the North Pacific, which spread eastward and westward in November and finally cover all midlatitudes in December. During October–January a longitudinal distribution of the ozone tendencies mirrors a structure of quasi-stationary planetary waves in the lower stratosphere and has less similarity with this structure in February–March when chemistry begins to play a more important role. From November to March, zonal mean ozone tendencies (50°–60° N) show strong correlation (|r|=0.7) with different parameters used as proxies of the mean meridional circulation, namely: eddy heat flux, the vertical residual velocity (diabatically-derived) and temperature tendency. The correlation patterns between ozone tendency and the vertical residual velocity or temperature tendency are more homogeneous from month to month than ones for eddy heat flux. A partial exception is December when correlation is strong only for the vertical residual velocity. In October zonal mean ozone tendencies have no coupling with the proxies. However, positive tendencies averaged over the North Pacific correlate well, with all of them suggesting that intensification of northward ozone transport starts locally over the Pacific already in October. We show that the NH midlatitude ozone buildup has stable statistical relation with the mean meridional circulation in all months from October to March and half of the interannual variability in monthly ozone tendencies can be explained by applying different proxies of the mean meridional circulation.


2021 ◽  
Author(s):  
Dong Xiao ◽  
Hongli Ren

AbstractArctic amplification refers to the greater surface warming of the Arctic than of other regions during recent decades. A similar phenomenon occurs in the troposphere and is termed “tropospheric Arctic amplification” (TAA). The poleward eddy heat flux and eddy moisture flux are critical to Arctic warming. In this study, we investigate the synoptic transient eddy activity over the North Pacific associated with TAA and its relationship with the subtropical jet stream, and propose the following mechanism. A poleward shift of the subtropical jet axis results in anomalies of the meridional gradient of zonal wind over the North Pacific, which drive a meridional dipole pattern of synoptic transient wave intensity over the North Pacific, referred to as the North Pacific Synoptic Transient wave intensity Dipole (NPSTD). The NPSTD index underwent an interdecadal shift in the late 1990s accompanying that of the subtropical jet stream. During the positive phase of the NPSTD index, synoptic eddy heat flux transports more heat to the Arctic Circle, and the eddy heat flux diverges, increasing Arctic temperature. This mechanism highlights the need to consider synoptic transient eddy activity over the North Pacific as the link between the mean state of the North Pacific subtropical upper jet and TAA.


2020 ◽  
Author(s):  
Yuan-Bing Zhao

<p>Using a recently developed methodology, namely, the multiscale window transform (MWT), and the MWT-based theory of canonical transfer and localized multiscale energetics analysis, we investigate in an eddy-following way the nonlinear eddy-background flow interaction in the North Pacific storm track, based on the ERA40 reanalysis data from ECWMF. It is found that more than 50% of the storms occur on the northern flank of the jet stream, about 40% are around the jet center, and very few (less than 5%) happen on the southern flank. For storms near or to the north of the jet center, their interaction with the background flow is asymmetric in latitude. In higher latitudes, strong downscale canonical available potential energy transfer happens, especially in the middle troposphere, which reduces the background baroclinicity and decelerates the jet; in lower latitudes, upscale canonical kinetic energy transfer intensifies at the jet center, accelerating the jet and enhancing the middle-level baroclinicity. The resultant effect is that the jet strengthens but narrows, leading to an anomalous dipolar pattern in the fields of background wind and baroclinicity. For the storms on the southern side of the jet, the baroclinic canonical transfer is rather weak. On average, the local interaction begins from about 3 days before a storm arrives at the site of observation, achieves its maximum as the storm arrives, and then weakens.</p>


2021 ◽  
pp. 1-55

Abstract Storm-track activity over the North Pacific climatologically exhibits a clear minimum in midwinter, when the westerly jet speed sharply maximizes. This counterintuitive phenomenon, referred to as the “midwinter minimum (MWM)”, has been investigated from various perspectives, but the mechanisms are still to be unrevealed. Toward better understanding of this phenomenon, the present study delineates the detailed seasonal evolution of climatological-mean Eulerian statistics and energetics of migratory eddies along the NP storm-track over 60 years. As a comprehensive investigation of the mechanisms for the MWM, this study has revealed that the net eddy conversion/generation rate normalized by the eddy total energy, which is independent of eddy amplitude, is indeed reduced in midwinter. The reduction from early winter occurs mainly due to the decreased effectiveness of the baroclinic energy conversion through seasonally weakened temperature fluctuations and the resultant poleward eddy heat flux. The reduced net normalized conversion/generation rate in midwinter is also found to arise in part from the seasonally enhanced kinetic energy conversion from eddies into the strongly diffluent Pacific jet around its exit. The seasonality of the net energy influx also contributes especially to the spring recovery of the net normalized conversion/generation rate. The midwinter reduction in the normalized rates of both the net energy conversion/generation and baroclinic energy conversion was more pronounced in the period before the late 1980s, during which the MWM of the storm-track activity was climatologically more prominent.


2006 ◽  
Vol 63 (10) ◽  
pp. 2602-2615 ◽  
Author(s):  
Yi Deng ◽  
Mankin Mak

Abstract On the basis of an intraseasonal variability index of storm track evaluated for 40 winters (1963–64 through 2003–04) of NCEP–NCAR reanalysis data, it is found that well-defined midwinter minimum [MWMIN; (midwinter maximum MWMAX)] occurs in 21 (8) winters over the North Pacific. In contrast, MWMIN (MWMAX) occurs in 4 (25) of the 40 winters over the North Atlantic. The power spectrum of such an index for the Pacific has a broad peak between 5 and 10 yr, whereas the spectrum of the index for the Atlantic has comparable power in two spectral bands: 2–2.8 and 3.5–8 yr. Over the North Pacific, the increase in the zonal asymmetry of the background baroclinicity as well as in the corresponding horizontal deformation of the time-mean jet from early/late winter to midwinter is distinctly larger in an MWMIN winter. Associated with these changes, there is a distinctly stronger barotropic damping rate in the January of an MWMIN winter. The increase in the net conversion rate of eddy kinetic energy from early/late winter to midwinter is much larger in an MWMAX winter than that in an MWMIN winter. Even though there is a modest increase in the barotropic damping from early/late winter to midwinter over the North Atlantic, it is overcompensated by a larger increase in the baroclinic conversion rate. That would result in MWMAX. These results are empirical evidences in support of a hypothesis that a significant enhancement of the barotropic damping relative to the baroclinic growth from early/late winter to midwinter is a major contributing factor to MWMIN of the Pacific storm track.


Sign in / Sign up

Export Citation Format

Share Document