scholarly journals The Influence of Atlantic Variability on Asian Summer Climate Is Sensitive to the Pattern of the Sea Surface Temperature Anomaly

2020 ◽  
Vol 33 (17) ◽  
pp. 7567-7590 ◽  
Author(s):  
Satyaban B. Ratna ◽  
Timothy J. Osborn ◽  
Manoj Joshi ◽  
Jürg Luterbacher

AbstractWe simulate the response of Asian summer climate to Atlantic multidecadal oscillation (AMO)-like sea surface temperature (SST) anomalies using an intermediate-complexity general circulation model (IGCM4). Experiments are performed with seven individual AMO SST anomalies obtained from CMIP5/PMIP3 global climate models as well as their multimodel mean, globally and over the North Atlantic Ocean only, for both the positive and negative phases of the AMO. During the positive (warm) AMO phase, a Rossby wave train propagates eastward, causing a high pressure and warm and dry surface anomalies over eastern China and Japan. During the negative (cool) phase of the AMO, the midlatitude Rossby wave train is less robust, but the model does simulate a warm and dry South Asian monsoon, associated with the movement of the intertropical convergence zone in the tropical Atlantic. The circulation response and associated temperature and precipitation anomalies are sensitive to the choice of AMO SST anomaly pattern. A comparison between global SST and North Atlantic SST perturbation experiments indicates that East Asian climate anomalies are forced from the North Atlantic region, whereas South Asian climate anomalies are more strongly affected by the AMO-related SST anomalies outside the North Atlantic region. Experiments conducted with different amplitudes of negative and positive AMO anomalies show that the temperature response is linear with respect to SST anomaly but the precipitation response is nonlinear.

2020 ◽  
Author(s):  
Satyaban Bishoyi Ratna ◽  
Timothy Osborn ◽  
Manoj Joshi ◽  
Juerg Luterbacher

<p>We simulate the response of Asian summer climate to AMO-like (Atlantic Multidecadal Oscillation) sea surface temperature (SST) anomalies using the Intermediate General Circulation Model version 4 (IGCM4). Separate AMO SST patterns are obtained from seven Coupled Model Intercomparison Project phase 5 (CMIP5)/Paleoclimate Model Intercomparison Project phase 3 (PMIP3) global climate models, to explore the sensitivity of the atmospheric response to the SST pattern. Experiments are performed with seven individual and composited AMO SST anomalies globally, and over the North Atlantic Ocean only, for both the positive and negative phases of the AMO. During the positive AMO phase, a Rossby wave train propagates eastward, causing a high pressure anomaly over eastern China/Japan region, associated with a low level anomalous anticyclonic circulation along with warm and dry anomalies. In contrast, the mid-latitude Rossby wave train is less robust in response to the cold phase of the AMO. The circulation response and the associated temperature and precipitation anomalies are sensitive to the AMO SST anomaly patterns. The comparison between global SST and N Atlantic SST experiments indicates that midlatitude East Asian climate anomalies are forced from the North Atlantic region. However, global SST anomaly experiments show that the SST anomalies outside the North Atlantic region, but still associated with AMO, strongly influence South Asian climate as they either strengthen or reduce the precipitation. Experiments with different amplitudes of negative and positive AMO anomalies test the linearity of the response. Over a large region of South and East Asia, temperature has a linear response to the amplitude of North Atlantic SST anomaly associated with both positive and negative AMO conditions, but the precipitation response is nonlinear.</p>


2020 ◽  
Vol 33 (17) ◽  
pp. 7255-7274
Author(s):  
Shangfeng Chen ◽  
Renguang Wu ◽  
Wen Chen ◽  
Kai Li

AbstractThis study reveals a pronounced out-of-phase relationship between surface air temperature (SAT) anomalies over northeast Eurasia in boreal winter and the following summer during 1980–2017. A colder (warmer) winter over northeast Eurasia tends to be followed by a warmer (cooler) summer of next year. The processes for the out-of-phase relation of winter and summer SAT involve the Arctic Oscillation (AO), the air–sea interaction in the North Atlantic Ocean, and a Eurasian anomalous atmospheric circulation pattern induced by the North Atlantic sea surface temperature (SST) anomalies. Winter negative AO/North Atlantic Oscillation (NAO)-like atmospheric circulation anomalies lead to continental cooling over Eurasia via anomalous advection and a tripolar SST anomaly pattern in the North Atlantic. The North Atlantic SST anomaly pattern switches to a dipolar pattern in the following summer via air–sea interaction processes and associated surface heat flux changes. The summer North Atlantic dipolar SST anomaly pattern induces a downstream atmospheric wave train, including large-scale positive geopotential height anomalies over northeast Eurasia, which contributes to positive SAT anomalies there via enhancement of downward surface shortwave radiation and anomalous advection. Barotropic model experiments verify the role of the summer North Atlantic SST anomalies in triggering the atmospheric wave train over Eurasia. Through the above processes, a colder winter is followed by a warmer summer over northeast Eurasia. The above processes apply to the years when warmer winters are followed by cooler summers except for opposite signs of SAT, atmospheric circulation, and SST anomalies.


2019 ◽  
Vol 32 (19) ◽  
pp. 6513-6532 ◽  
Author(s):  
Zhang Chen ◽  
Renguang Wu ◽  
Zhibiao Wang

Abstract The present study investigates the impacts of the North Atlantic sea surface temperature (SST) anomalies on the East Asian winter monsoon (EAWM) variability. It is found that the northern component of the EAWM variability is associated with a dipole pattern of preceding summer North Atlantic SST anomalies during 1979–2016. The processes linking preceding summer North Atlantic SST to EAWM include the North Atlantic air–sea interactions and atmospheric wave train triggered by the North Atlantic SST anomalies. Atmospheric wind anomalies in the preceding spring–summer result in the formation of a dipole SST anomaly pattern through surface heat flux changes. In turn, the induced SST anomalies provide a feedback on the atmosphere, modifying the location and intensity of anomalous winds over the North Atlantic. The associated surface heat flux anomalies switch the North Atlantic SST anomaly distribution from a dipole pattern in summer to a tripole pattern in the following winter. The North Atlantic tripole SST anomalies excite an atmospheric wave train extending from the North Atlantic through Eurasia to East Asia in winter, resulting in anomalous EAWM. However, the relationship of the northern component of EAWM to preceding summer North Atlantic SST anomalies is weak before the late 1970s. During 1956–76, due to weak air–sea interaction over the North Atlantic, no obvious tripole SST anomaly pattern is established in winter. The atmospheric wave train in winter is located at higher latitudes, leading to a weak connection between the northern component of EAWM and the preceding summer North Atlantic dipole SST anomaly pattern.


2016 ◽  
Vol 29 (2) ◽  
pp. 659-671 ◽  
Author(s):  
Qi Hu ◽  
Michael C. Veres

Abstract This is the second part of a two-part paper that addresses deterministic roles of the sea surface temperature (SST) anomalies associated with the Atlantic multidecadal oscillation (AMO) in variations of atmospheric circulation and precipitation in the Northern Hemisphere, using a sequence of idealized model runs at the spring equinox conditions. This part focuses on the effect of the SST anomalies on North American precipitation. Major results show that, in the model setting closest to the real-world situation, a warm SST anomaly in the North Atlantic Ocean causes suppressed precipitation in central, western, and northern North America but more precipitation in the southeast. A nearly reversed pattern of precipitation anomalies develops in response to the cold SST anomaly. Further examinations of these solutions reveal that the response to the cold SST anomaly is less stable than that to the warm SST anomaly. The former is “dynamically charged” in the sense that positive eddy kinetic energy (EKE) exists over the continent. The lack of precipitation in its southeast is because of an insufficient moisture supply. In addition, the results show that the EKE of the short- (2–6 day) and medium-range (7–10 day) weather-producing processes in North America have nearly opposite signs in response to the same cold SST anomaly. These competing effects of eddies in the dynamically charged environment (elevated sensitivity to moisture) complicate the circulation and precipitation responses to the cold SST anomaly in the North Atlantic and may explain why the model results show more varying precipitation anomalies (also confirmed by statistical test results) during the cold than the warm SST anomaly, as also shown in simulations with more realistic models. Results of this study indicate a need to include the AMO in the right context with other forcings in an effort to improve understanding of interannual-to-multidecadal variations in warm season precipitation in North America.


2008 ◽  
Vol 21 (3) ◽  
pp. 576-583 ◽  
Author(s):  
David Ferreira ◽  
Claude Frankignoul

Abstract The transient atmospheric response to interactive SST anomalies in the midlatitudes is investigated using a three-layer QG model coupled in perpetual winter conditions to a slab oceanic mixed layer in the North Atlantic. The SST anomalies are diagnosed from a coupled run and prescribed as initial conditions, but are free to evolve. The initial evolution of the atmospheric response is similar to that obtained with a prescribed SST anomaly, starting as a quasi-linear baroclinic and then quickly evolving into a growing equivalent barotropic one. Because of the heat flux damping, the SST anomaly amplitude slowly decreases, albeit with little change in pattern. Correspondingly, the atmospheric response only increases until it reaches a maximum amplitude after about 1–3.5 months, depending on the SST anomaly considered. The response is similar to that at equilibrium in the fixed SST case, but it is 1.5–2 times smaller, and then slowly decays away.


2021 ◽  
Author(s):  
Jingyi Li ◽  
Fei Li ◽  
Shengping He ◽  
Huijun Wang ◽  
Yvan J Orsolini

<p>The Tibetan Plateau (TP), referred to as the “Asian water tower”, contains one of the largest land ice masses on Earth. The local glacier shrinkage and frozen-water storage are strongly affected by variations in surface air temperature over the TP (TPSAT), especially in springtime. This study reveals a distinct out-of-phase connection between the February North Atlantic Oscillation (NAO) and March TPSAT, which is non-stationary and regulated by the warm phase of the Atlantic Multidecadal Variability (AMV+). The results show that during the AMV+, the negative phase of the NAO persists from February to March, and is accompanied by a quasi-stationary Rossby wave train trapped along a northward-shifted subtropical westerly jet stream across Eurasia, inducing an anomalous adiabatic descent that warms the TP. However, during the cold phase of the AMV, the negative NAO does not persist into March. The Rossby wave train propagates along the well-separated polar and subtropical westerly jets, and the NAO−TPSAT connection is broken. Further investigation suggests that the enhanced synoptic eddy and low-frequency flow (SELF) interaction over the North Atlantic in February and March during the AMV+, caused by the enhanced and southward-shifted storm track, help maintain the NAO anomaly pattern via positive eddy feedback. This study provides a new detailed perspective on the decadal variability of the North Atlantic−TP connections in late winter−early spring.</p>


2018 ◽  
Vol 31 (9) ◽  
pp. 3575-3595 ◽  
Author(s):  
Shangfeng Chen ◽  
Renguang Wu ◽  
Wen Chen ◽  
Shuailei Yao

The present study reveals a marked enhancement in the relationship between Eurasian winter and spring atmospheric interannual variability since the early 1990s. Specifically, the dominant mode of winter Eurasian 500-hPa geopotential height anomalies, with same-sign anomalies over southern Europe and East Asia and opposite-sign anomalies over north-central Eurasia, is largely maintained to the following spring after the early 1990s, but not before the early 1990s. The maintenance of the dominant atmospheric circulation anomaly pattern after the early 1990s is associated with a triple sea surface temperature (SST) anomaly pattern in the North Atlantic that is sustained from winter to the subsequent spring. This triple SST anomaly pattern triggers an atmospheric wave train over the North Atlantic through Eurasia during winter through spring. Atmospheric model experiments verify the role of the triple SST anomaly in maintaining the Eurasian atmospheric circulation anomalies. By contrast, before the early 1990s, marked SST anomalies related to the winter dominant mode only occur in the tropical North Atlantic during winter and they disappear during the following spring. The triple SST anomaly pattern after the early 1990s forms in response to a meridional atmospheric dipole over the North Atlantic induced by a La Niña–like cooling over tropical Pacific, and its maintenance into the following spring may be via a positive air–sea interaction process over the North Atlantic. Results of this analysis suggest a potential source for the seasonal prediction of the Eurasian spring climate.


2020 ◽  
Author(s):  
Hejing Wang ◽  
Dehai Luo

<p>In our study, we aim to examine what factors lead to the summer heat waves over Eurasia and their variability. The analysis reveals that the summer heat waves over Eurasia show two kinds of spatial patterns: midlatitude and high latitude types. The mid-latitude heat wave mainly occurred over west Russia in the west of 55°E and in the south of 60°N, whereas the high-latitude type mainly occurred over west Russia in the east of 55°E and in the north of 55°N. We further analyzed the relationship of the two kinds of heat waves with atmospheric circulation patterns in the Atlantic-Eurasian sector and sea surface temperature (SST) anomalies over the North Atlantic and Arctic. The results show that the cold or warm SST anomalies over Barents-Kara Seas (BKS) can significantly influence the latitude and longitude of Russian heat waves, while the heat waves are also related to the latitude of positive SST anomalies over North Atlantic.</p><p>A mid-latitude wave train propagating into Eurasia and mid-latitude Russian heat waves, which are related to the positive phase of the North Atlantic Oscillation (NAO), are seen when there are strong SST warming in the North Atlantic mid-high latitudes south of 60°N and SST cooling over BKS. In contrast, a high-latitude Russian heat wave can occur over west Russia when there are positive SST anomalies over Baffin Bay, Davis Strait and Labrador Sea north of 60°N and BKS, while this high-latitude wave train is related to the decay of Greenland blocking or the negative NAO phase via high-latitude wave train propagation.</p>


2015 ◽  
Vol 28 (2) ◽  
pp. 485-504 ◽  
Author(s):  
Shangfeng Chen ◽  
Renguang Wu ◽  
Wen Chen

Abstract The relationship between interannual variations of boreal winter North Atlantic Oscillation (NAO) and northern tropical Atlantic (NTA) sea surface temperature (SST) experienced obvious interdecadal changes during 1870–2012. Similar interdecadal changes are observed in the amplitude of NTA SST anomalies. The mean NTA SST change may be a plausible reason for several changes in the NAO–NTA SST connection. Under a higher mean NTA SST, NTA SST anomalies induce larger wind anomalies over the North Atlantic that produce a tripole SST anomaly pattern and amplify NTA SST anomalies. Comparison of the evolution of anomalies between 1970–86 and 1996–2012 unravels changing roles of El Niño–Southern Oscillation (ENSO) and extratropical atmospheric disturbances in the formation of NTA SST anomalies. During 1970–86, ENSO events play a key role in initiating NTA SST anomalies in the preceding spring through atmospheric circulation changes. With the decay of ENSO, SST anomalies in the midlatitude North Atlantic weaken in the following summer, whereas NTA SST anomalies are maintained up to winter. This leads to a weak NAO–NTA SST connection in winter. During 1996–2012, the preceding spring atmospheric circulation disturbances over the midlatitude North Atlantic play a dominant role in the genesis of a North Atlantic horseshoe (NAH)-like SST anomaly pattern in the following summer and fall. This NAH-like SST anomaly pattern contributes to the development of the NAO in late fall and early winter. The atmospheric circulation anomaly, in turn, is conducive to the maintenance of NTA SST anomalies to winter via changing surface latent heat flux and shortwave radiation. This leads to a close NAO–NTA SST connection in winter.


2021 ◽  
pp. 1-40
Author(s):  
Jingyi Li ◽  
Fei Li ◽  
Shengping He ◽  
Huijun Wang ◽  
Yvan J Orsolini

AbstractThe Tibetan Plateau (TP), referred to as the “Asian water tower”, contains one of the largest land ice masses on Earth. The local glacier shrinkage and frozen-water storage are strongly affected by variations in surface air temperature over the TP (TPSAT), especially in springtime. This study reveals that the relationship between the February North Atlantic Oscillation (NAO) and March TPSAT is unstable with time and regulated by the phase of the Atlantic Multidecadal Variability (AMV). The significant out-of-phase connection occurs only during the warm phase of AMV (AMV+). The results show that during the AMV+, the negative phase of the NAO persists from February to March, and is accompanied by a quasi-stationary Rossby wave train trapped along a northward-shifted subtropical westerly jet stream across Eurasia, inducing an anomalous adiabatic descent that warms the TP. However, during the cold phase of the AMV, the negative NAO can not persist into March. The Rossby wave train propagates along the well-separated polar and subtropical westerly jets, and the NAO−TPSAT connection is broken. Further investigation suggests that the enhanced synoptic eddy and low frequency flow (SELF) interaction over the North Atlantic in February and March during the AMV+, caused by the enhanced and southward-shifted storm track, help maintain the NAO anomaly pattern via positive eddy feedback. This study provides a new detailed perspective on the decadal variability of the North Atlantic−TP connection in late winter−early spring.


Sign in / Sign up

Export Citation Format

Share Document