Teleconnections Governing the Interannual Variability of Great Plains Low-Level Jets in May

2021 ◽  
pp. 1-60
Author(s):  
Shubhi Agrawal ◽  
Craig R. Ferguson ◽  
Lance Bosart ◽  
D. Alex Burrows

AbstractA spectral analysis of Great Plains 850-hPa meridional winds (V850) from ECMWF’s coupled climate reanalysis of 1901-2010 (CERA-20C) reveals that their warm season (April-September) interannual variability peaks in May with 2-6 year periodicity, suggestive of an underlying teleconnection influence on low-level jets (LLJs). Using an objective, dynamical jet classification framework based on 500-hPa wave activity, we pursue a large scale teleconnection hypothesis separately for LLJs that are uncoupled (LLJUC) and coupled (LLJC) to the upper-level jet stream. Differentiating between jet types enables isolation of their respective sources of variability. In the South Central Plains (SCP), May LLJCs account for nearly 1.6 times more precipitation and 1.5 times greater V850 compared to LLJUCs. Composite analyses of May 250-hPa geopotential height (Z250) conditioned on LLJC and LLJUC frequencies highlight a distinct planetary-scale Rossby wave pattern with wavenumber-five, indicative of an underlying Circumglobal Teleconnection (CGT). An index of May CGT is found to be significantly correlated with both LLJC (r = 0.62) and LLJUC (r = −0.48) frequencies. Additionally, a significant correlation is found between May LLJUC frequency and NAO (r = 0.33). Further analyses expose decadal scale variations in the CGT-LLJC(LLJUC) teleconnection that are linked to the PDO. Dynamically, these large scale teleconnections impact LLJ class frequency and intensity via upper-level geopotential anomalies over the western U.S. that modulate near-surface geopotential and temperature gradients across the SCP.

2018 ◽  
Vol 146 (8) ◽  
pp. 2615-2637 ◽  
Author(s):  
Joshua G. Gebauer ◽  
Alan Shapiro ◽  
Evgeni Fedorovich ◽  
Petra Klein

AbstractObservations from three nights of the Plains Elevated Convection at Night (PECAN) field campaign were used in conjunction with Rapid Refresh model forecasts to find the cause of north–south lines of convection, which initiated away from obvious surface boundaries. Such pristine convection initiation (CI) is relatively common during the warm season over the Great Plains of the United States. The observations and model forecasts revealed that all three nights had horizontally heterogeneous and veering-with-height low-level jets (LLJs) of nonuniform depth. The veering and heterogeneity were associated with convergence at the top-eastern edge of the LLJ, where moisture advection was also occurring. As time progressed, this upper region became saturated and, due to its placement above the capping inversion, formed moist absolutely unstable layers, from which the convergence helped initiate elevated convection. The structure of the LLJs on the CI nights was likely influenced by nonuniform heating across the sloped terrain, which led to the uneven LLJ depth and contributed toward the wind veering with height through the creation of horizontal buoyancy gradients. These three CI events highlight the importance of assessing the full three-dimensional structure of the LLJ when forecasting nocturnal convection over the Great Plains.


2020 ◽  
Author(s):  
D. Alex Burrows ◽  
Craig Ferguson ◽  
Shubhi Agrawal ◽  
Lance Bosart

<p>The United States (U.S.) Great Plains southerly low-level jet (GPLLJ) is a ubiquitous feature of the summertime climatological flow in the central U.S. contributing to a large percentage of mean and extreme summertime rainfall, the generation of vast quantities of U.S. renewable wind energy, and severe weather outbreaks.  Like other LLJs across the globe, the GPLLJ can be 1) vertically coupled to the large-scale cyclone-anticyclone flow pattern associated with an upper-level jet stream or 2) uncoupled to the large-scale flow but sustained in response to various local land-atmosphere coupling mechanisms.  Many studies have focused on the interactions between teleconnection patterns and associated GPLLJ variability, treating the GPLLJ as a singular phenomenon.  Here, we treat the GPLLJ as two phenomena, coupled and uncoupled to the upper-level flow, and explore the multiscale impacts of SST forced and internally generated modes of variability on the GPLLJ.  With mounting evidence for the low-frequency control on higher frequency GPLLJ variability, the current study analyzes the contribution of the Pacific/North America (PNA) pattern on sub-seasonal timescales and ENSO on interannual timescales to changes in the frequency distributions of both coupled and uncoupled GPLLJs.</p><p> </p><p>This analysis utilizes 1) the Coupled ERA 20th Century (CERA-20C; 1901-2010) reanalysis from ECMWF which provides a large sample of teleconnection conditions and their impacts on GPLLJ variability and 2) a recently developed automated technique to differentiate those GPLLJs that are coupled or uncoupled to the upper-level flow.  Many studies have already shown that two distinct synoptic regimes dominate GPLLJ variability, a western U.S. trough and a central U.S. ridge.  This leads to changes in the frequency ratio of coupled and uncoupled GPLLJ events and ultimately in the location and intensity of precipitation across the GP.  Recently, Burrows et al. (2019) showed that during the Dust Bowl period of 1932-1938, the central and northern GP experienced anomalously high (low) uncoupled (coupled) GPLLJ event frequencies that coincided with a multi-year dry period across the entire region.  Understanding the upscale and lower frequency forcing patterns that lead to these distinct synoptic regimes would lead to greater predictability and forecasting skill.  On sub-seasonal timescales, it is shown that the negative phase of the PNA, which is associated with a southerly displaced Pacific jet stream and a western U.S. trough, leads to increases in the frequency of GPLLJs that are coupled to the upper-level flow, increases in Gulf of Mexico moisture flux and a redistribution of GP precipitation.  On interannual timescales, the location of ENSO events, i.e., eastern or central Pacific, is explored to determine the relationship between tropical forced variability and upper-level coupling to the GPLLJ.  In line with recent studies, it is hypothesized that central Pacific ENSO events may lead to increases in coupled GPLLJ events and precipitation, particularly in the southern GP.</p>


2016 ◽  
Vol 29 (9) ◽  
pp. 3403-3422 ◽  
Author(s):  
Baohua Chen ◽  
Chuntao Liu

Abstract This study uses 16-yr Tropical Rainfall Measuring Mission (TRMM) radar precipitation feature (RPF) data to characterize warm rain systems in the tropics with large horizontal extensions, referred to as warm organized rain systems. The systems are selected by specifying the RPFs with minimum infrared brightness temperature warmer than 0°C and rain area greater than 500 km2. ERA-Interim atmospheric fields and SST from NOAA are analyzed to highlight the environmental characteristics of warm organized rain systems. Warm organized systems occur over specific oceanic regions, including the eastern Pacific ITCZ, the eastern part of the SPCZ, and coastal regions. In contrast with ubiquitous warm isolated RPFs, warm organized systems have greater near-surface radar reflectivity. The rainfall amounts generated by warm organized systems are greater in winter than in summer. Composite analyses indicate that warm organized RPFs prefer to coexist with a dry midtroposphere associated with a strong upper-level descent, an enhanced near-surface moisture convergence, and a strong low-level large-scale ascent. The shallow meridional circulation in the eastern Pacific is significantly stronger for warm organized RPFs compared to the circulation for warm isolated RPFs. Warm organized systems over the tropical eastern Pacific occur at warm SSTs with mean value of about 27°C and a strong SST meridional gradient. The warm organized RPFs in the tropical eastern Pacific are found to be at the southern edge of deep ITCZ cores. This is probably related to the meridional asymmetrical thermodynamic structure over the eastern Pacific ITCZ with a higher low-level humidity to the south. Similar favorable large-scale environments for the warm organized RPFs are also found over the SPCZ and other regions.


2009 ◽  
Vol 22 (20) ◽  
pp. 5401-5420 ◽  
Author(s):  
Scott J. Weaver ◽  
Siegfried Schubert ◽  
Hailan Wang

Abstract Sea surface temperature (SST) linkages to central U.S. low-level circulation and precipitation variability are investigated from the perspective of the Great Plains low-level jet (GPLLJ) and recurring modes of SST variability. The observed and simulated links are first examined via GPLLJ index regressions to precipitation, SST, and large-scale circulation fields in the NCEP–NCAR and North American Regional Reanalysis (NARR) reanalyses, and NASA’s Seasonal-to-Interannual Prediction Project (NSIPP1) and Community Climate Model, version 3 (CCM3) ensemble mean Atmospheric Model Intercomparison Project (AMIP) simulations for the 1949–2002 (1979–2002 for NARR) period. Characteristics of the low-level circulation and its related precipitation are further examined in the U.S. Climate Variability and Predictability (CLIVAR) Drought Working Group idealized climate model simulations (NSIPP1 and CCM3) forced with varying polarities of recurring modes of SST variability. It is found that the observed and simulated correlations of the GPLLJ index to Atlantic and Pacific SST, large-scale atmospheric circulation, and Great Plains precipitation variability for 1949–2002 are robust during the July–September (JAS) season and show connections to a distinct global-scale SST variability pattern, one similar to that used in forcing the NSIPP1 and CCM3 idealized simulations, and a subtropical Atlantic-based sea level pressure (SLP) anomaly with a maximum over the Gulf of Mexico. The idealized simulations demonstrate that a warm Pacific and/or a cold Atlantic are influential over regional hydroclimate features including the monthly preference for maximum GPLLJ and precipitation in the seasonal cycle. Furthermore, it appears that the regional expression of globally derived SST variability is important for generating an anomalous atmospheric low-level response of consequence to the GPLLJ, especially when the SST anomaly is positioned over a regional maximum in climatological SST, and in this case the Western Hemisphere warm pool.


2006 ◽  
Vol 45 (1) ◽  
pp. 194-209 ◽  
Author(s):  
Da-Lin Zhang ◽  
Shunli Zhang ◽  
Scott J. Weaver

Abstract Although considerable research has been conducted to study the characteristics of the low-level jets (LLJs) over the Great Plains states, little is known about the development of LLJs over the Mid-Atlantic states. In this study, the Mid-Atlantic LLJ and its associated characteristics during the warm seasons of 2001 and 2002 are documented with both the wind profiler data and the daily real-time model forecast products. A case study with three model sensitivity simulations is performed to gain insight into the three-dimensional structures and evolution of an LLJ and the mechanisms by which it developed. It is found that the Mid-Atlantic LLJ, ranging from 8 to 23 m s−1, appeared at an average altitude of 670 m and on 15–25 days of each month. About 90% of the 160 observed LLJ events occurred between 0000 and 0600 LST, and about 60% had southerly to westerly directions. Statistically, the real-time forecasts capture most of the LLJ events with nearly the right timing, intensity, and altitude, although individual forecasts may not correspond to those observed. For a selected southwesterly LLJ case, both the observations and the control simulation exhibit a pronounced diurnal cycle of horizontal winds in the lowest 1.5 km. The simulation shows that the Appalachian Mountains tend to produce a sloping mixed layer with northeasterly thermal winds during the daytime and reversed thermal winds after midnight. With additional thermal contrast effects associated with the Chesapeake Bay and the Atlantic Ocean, the daytime low-level winds vary significantly from the east coast to the mountainous regions. The LLJ after midnight tends to be peaked preferentially around 77.5°W near the middle portion of the sloping terrain, and it decreases eastward as a result of the opposite thermal gradient across the coastline from the mountain-generated thermal gradient. Although the Mid-Atlantic LLJ is much weaker and less extensive than that over the Great Plains states, it has a width of 300–400 km (to its half-peak value) and a length scale of more than 1500 km, following closely the orientation of the Appalachians. Sensitivity simulations show that eliminating the surface heat fluxes produces the most significant impact on the development of the LLJ, then topography and the land–sea contrast, with its area-averaged intensity reduced from 12 m s−1 to about 6, 9, and 10 m s−1, respectively.


2020 ◽  
Vol 35 (1) ◽  
pp. 215-235 ◽  
Author(s):  
Kelsey M. Malloy ◽  
Ben P. Kirtman

Abstract Warm-season precipitation in the U.S. “Corn Belt,” the Great Plains, and the Midwest greatly influences agricultural production and is subject to high interannual and intraseasonal variability. Unfortunately, current seasonal and subseasonal forecasts for summer precipitation have relatively low skill. Therefore, there are ongoing efforts to understand hydroclimate variability targeted at improving predictions, particularly through its primary transporter of moisture: the Great Plains low-level jet (LLJ). This study uses the Community Climate System Model, version 4 (CCSM4), July forecasts, made as part of the North American Multi-Model Ensemble (NMME), to assess skill in reproducing the monthly Great Plains LLJ and associated precipitation. Generally, the CCSM4 forecasts capture the climatological jet but have problems representing the observed variability beyond two weeks. In addition, there are predictors associated with the large-scale variability identified through linear regression analysis, shifts in kernel density estimators, and case study analysis that suggest potential for improving confidence in forecasts. In this study, a strengthened Caribbean LLJ, negative Pacific–North American (PNA) teleconnection, El Niño, and a negative Atlantic multidecadal oscillation each have a relatively strong and consistent relationship with a strengthened Great Plains LLJ. The circulation predictors, the Caribbean LLJ and PNA, present the greatest “forecast of opportunity” for considering and assigning confidence in monthly forecasts.


2021 ◽  
Author(s):  
Craig R. Ferguson

<p>In the semi-arid U.S. Great Plains, nocturnal southerly low-level jets (LLJs) serve critical roles as conveyors of remotely-sourced (i.e., Gulf of Mexico) water vapor and agents of atmospheric instability in the warm-season.  Defined by a diurnally oscillating wind maximum between 0–3 km above the surface, LLJs have been studied by meteorologists for over 60-years due to their role in severe weather outbreaks. It is only within the past decade that a subset of LLJs with especially high vertically integrated water vapor transport, termed atmospheric rivers, have drawn the attention of hydrologists.</p><p>In this study, changes in LLJ frequency and structure over the period from 1901–2010 are quantified using ECMWF’s Coupled Reanalysis of the Twentieth Century (CERA-20C). A new objective dynamical LLJ classification dataset is used to separately quantify changes in the two predominant LLJ types: synoptically coupled and uncoupled. The findings reveal that both the frequency of Great Plains LLJs and their associated precipitation have decreased significantly over the 20th century. Decreases in LLJ associated precipitation range between 10–14% of total present day May–September precipitation. The largest differences observed are attributable to uncoupled jet frequency and structural changes during July and August over the central and northern Great Plains. Overall, the results indicate the contribution of LLJs to the region’s water budget has diminished.</p>


2019 ◽  
Vol 32 (16) ◽  
pp. 5123-5144 ◽  
Author(s):  
Derek Hodges ◽  
Zhaoxia Pu

Abstract Low-level jets (LLJs) are associated with 10%–45% of the summer precipitation in the U.S. Great Plains region (GPR). This study uses the NCEP North American Regional Reanalysis data product (1979–2017) to characterize the association between LLJs and precipitation extremes (anomalously wet versus dry) during the summer months (June–August) over the GPR. It is found that the number, distribution, and direction of LLJs are not clearly associated with the precipitation anomalies. The characteristics and structural variations of the LLJs and their large-scale and mesoscale environment are then examined to identify the links between LLJs and precipitation extremes. Results show that dry and wet summers vary by synoptic anomaly patterns. During dry summers the anomalous ridging results in a warmer and drier environment, primarily through subsidence, which inhibits precipitation near LLJs. In contrast, during wet summers, a reduction in subsidence occurs, resulting in stronger lift and a cooler and moister environment, which leads to enhanced precipitation near LLJs. The LLJ speed, orientation, and spatial properties vary according to the synoptic anomaly patterns. LLJs do not drive precipitation extremes, but instead, they respond to them. Specifically, the LLJ exit region is characterized by stronger baroclinity and higher moisture content during the wet years. The higher moisture content allows for ascending air parcels to reach saturation more quickly, while the stronger baroclinity increases the warm advection associated with the LLJ. This, in turn, leads to faster rising motion and is therefore closely associated with the location and intensity of the LLJ associated precipitation.


2006 ◽  
Vol 134 (2) ◽  
pp. 454-477 ◽  
Author(s):  
Brian A. Colle ◽  
Kenneth A. Loescher ◽  
George S. Young ◽  
Nathaniel S. Winstead

Abstract This paper investigates the large-scale flow and thermodynamic structures associated with barrier jets along the Alaskan coast using the National Centers for Environmental Prediction (NCEP) reanalysis, as well as the average wind, moisture, and thermodynamic soundings at Yakutat, Alaska (YAK), and Whitehorse, Yukon Territory, Canada (YXY). Large-scale and sounding composites are constructed for all barrier jets objectively identified around YAK using synthetic aperture radar (SAR) imagery during the cool and warm seasons of 1998–2003. During the cool season the jet events are separated into those with sharp upstream wind gradients (shock jets), highly variable (“gustlike”) surface winds (variable jets), and the other jet events (other jets). Those cool season barrier jets without shock or variable characteristics are associated with an anomalously deep upper-level trough approaching the Gulf of Alaska and an anomalous ridge over western Canada and interior Alaska. The associated surface cyclone and surface ridging result in strong low-level southerlies over southeast Alaska and the advection of 850-mb warm anomalies northward from the subtropics to Alaska. In contrast, the shock events have significant cold anomalies at 850 mb over the interior, while both the shock and variable jets have less upper-level ridging over the interior. The warm season other-jet composite is similar to that for the cool season, except that an 850-mb cool anomaly develops near the coast and the approaching upper-level trough is not significantly deeper than climatology. The sounding composite at YAK of the other-jet type during the cool season is more stable, moist, and slightly cooler at lower levels than the nonjet events. The largest low-level cool, dry, and high stability anomalies are for the shock events at YAK and YXY, which suggests that this cold and dry air source over the interior is an important ingredient for the development of sharp frontlike boundaries to the barrier jet. In contrast, the variable jets have weaker low-level stability, which favors the subsequent mixing of higher momentum to the surface in localized areas. The warm season jets also have cooler lower levels than those for the nonjet events, but the lower levels are nearly well mixed with little stratification, especially over the interior.


Sign in / Sign up

Export Citation Format

Share Document