Sea surface salinity reemergence in an updated North Atlantic in-situ salinity data set

2021 ◽  
pp. 1-49
Author(s):  
Claude Frankignoul ◽  
Elodie Kestenare ◽  
Gilles Reverdin

AbstractMonthly sea surface salinity (SSS) fields are constructed from observations, using objective mapping on a 1°x1° grid in the Atlantic between 30°S and 50°N in the 1970-2016 period in an update of the data set of Reverdin et al. (2007). Data coverage is heterogeneous, with increased density in 2002 when Argo floats become available, high density along Voluntary Observing Ship lines, and low density south of 10°S. Using lag correlation, the seasonal reemergence of SSS anomalies is investigated between 20°N and 50°N in 5°x5° boxes during the 1993-2016 period, both locally and remotely following the displacements of the deep mixed-layer waters estimated from virtual float trajectories derived from the daily AVISO surface geostrophic currents. Although SSS data are noisy, local SSS reemergence is detected in about half of the boxes, notably in the northeast and southeast, while little reemergence is seen in the central and part of the eastern subtropical gyre. In the same period, sea surface temperature (SST) reemergence is found only slightly more frequently, reflecting the short data duration. However, taking geostrophic advection into account degrades the detection of remote SSS and even SST reemergence. When anomalies are averaged over broader areas, robust evidence of a second and third SSS reemergence peak is found in the northeastern and southeastern parts of the domain, indicating long cold-season persistence of large-scale SSS anomalies, while only a first SST reemergence is seen. An oceanic reanalysis is used to confirm that the correlation analysis indeed reflects the reemergence of subsurface salinity anomalies.

2021 ◽  
Vol 13 (22) ◽  
pp. 4600
Author(s):  
Sébastien Guimbard ◽  
Nicolas Reul ◽  
Roberto Sabia ◽  
Sylvain Herlédan ◽  
Ziad El Khoury Hanna ◽  
...  

The Pilot-Mission Exploitation Platform (Pi-MEP) for salinity is an ESA initiative originally meant to support and widen the uptake of Soil Moisture and Ocean Salinity (SMOS) mission data over the ocean. Starting in 2017, the project aims at setting up a computational web-based platform focusing on satellite sea surface salinity data, supporting studies on enhanced validation and scientific process over the ocean. It has been designed in close collaboration with a dedicated science advisory group in order to achieve three main objectives: gathering all the data required to exploit satellite sea surface salinity data, systematically producing a wide range of metrics for comparing and monitoring sea surface salinity products’ quality, and providing user-friendly tools to explore, visualize and exploit both the collected products and the results of the automated analyses. The Salinity Pi-MEP is becoming a reference hub for the validation of satellite sea surface salinity missions by providing valuable information on satellite products (SMOS, Aquarius, SMAP), an extensive in situ database (e.g., Argo, thermosalinographs, moorings, drifters) and additional thematic datasets (precipitation, evaporation, currents, sea level anomalies, sea surface temperature, etc.). Co-localized databases between satellite products and in situ datasets are systematically generated together with validation analysis reports for 30 predefined regions. The data and reports are made fully accessible through the web interface of the platform. The datasets, validation metrics and tools (automatic, user-driven) of the platform are described in detail in this paper. Several dedicated scienctific case studies involving satellite SSS data are also systematically monitored by the platform, including major river plumes, mesoscale signatures in boundary currents, high latitudes, semi-enclosed seas, and the high-precipitation region of the eastern tropical Pacific. Since 2019, a partnership in the Salinity Pi-MEP project has been agreed between ESA and NASA to enlarge focus to encompass the entire set of satellite salinity sensors. The two agencies are now working together to widen the platform features on several technical aspects, such as triple-collocation software implementation, additional match-up collocation criteria and sustained exploitation of data from the SPURS campaigns.


2021 ◽  
Author(s):  
Roberto Sabia ◽  
Sebastien Guimbard ◽  
Nicolas Reul ◽  
Tony Lee ◽  
Julian Schanze ◽  
...  

<p>The Pilot Mission Exploitation Platform (Pi-MEP) for Salinity (www.salinity-pimep.org) has been released operationally in 2019 to the broad oceanographic community, in order to foster satellite sea surface salinity validation and exploitation activities.</p><p>Specifically, the Platform aims at enhancing salinityvalidation, by allowing systematic inter-comparison of various EO datasets with a broad suite of in-situ data, and also at enabling oceanographic process studies by capitalizing on salinity data in synergy with additional spaceborne estimates.</p><p> </p><p>Despite Pi-MEP was originally conceived as an ESA initiative to widen the uptake of the Soil Moisture and Ocean Salinity (SMOS) mission data over ocean, a project partnership with NASA was devised soon after the operational deployment, and an official collaboration endorsed within the ESA-NASA Joint Program Planning Group (JPPG).</p><p> </p><p>The Salinity Pi-MEP has therefore become a reference hub for SMOS, SMAP and Aquarius satellite salinity missions, which are assessed in synergy with additional thematic datasets (e.g., precipitation, evaporation, currents, sea level anomalies, ocean color, sea surface temperature). </p><p>Match-up databases of satellite/in situ (such as Argo, TSG, moorings, drifters) data and corresponding validation reports at different spatiotemporal scales are systematically generated; furthermore, recently-developed dedicated tools allow data visualization, metrics computation and user-driven features extractions.</p><p> </p><p>The Platform is also meant to monitor salinity in selected oceanographic “case studies”, ranging from river plumes monitoring to SSS characterization in challenging regions, such as high latitudes or semi-enclosed basins.</p><p> </p><p>The two Agencies are currently collaborating to widen the Platform features on several technical aspects - ranging from a triple-collocation software implementation to a sustained exploitation of data from the SPURS-1/2 campaigns. In this context, an upgrade of the satellite/in-situ match-up methodology has been recently agreed, resulting into a redefinition of the validation criteria that will be subsequently implemented in the Platform.</p><p> </p><p>A further synthesis of the three satellites salinity algorithms, models and auxiliary data handling is at the core of the ESA Climate Change Initiative (CCI) on Salinity and of ESA-NASA further collaboration.</p>


Author(s):  
Nicolas Kolodziejczyk ◽  
Mathieu Hamon ◽  
Jacqueline Boutin ◽  
Jean-Luc Vergely ◽  
Gilles Reverdin ◽  
...  

AbstractTen years of L-Band radiometric measurements have proven the capability of satellite Sea Surface Salinity (SSS) to resolve large scale to mesoscale SSS features in tropical to subtropical ocean. In mid to high latitude, L-Band measurements still suffer from large scale and time systematic errors. Here, a simple method is proposed to mitigate the large scale and seasonal varying biases. First, an Optimal Interpolation (OI) using a large correlation scale (~500 km) is used to map independently Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) Level 3 data. The mapping is compared to the equivalent mapping of in situ observations to estimate the large scale and seasonal biases. A second mapping is performed on adjusted SSS at the scale of SMOS/SMAP spatial resolution (~45 km). This procedure merges both products, and increases the signal to noise ratio of the absolute SSS estimates, reducing the RMSD of in situ-satellite products by about 26-32% from mid to high latitude, respectively, in comparison to the existing SMOS and SMAP L3 products. However, in the Arctic Ocean, some issues on satellite retrieved SSS related to e.g. radio frequency interferences, land-sea contamination, ice-sea contamination remain challenging to reduce given the low sensitivity of L-Band radiometric measurements to SSS in cold water. Using the thermodynamic equation of state (TEOS-10), the resulting L4 SSS satellite product is combined with satellite-microwave SST products to estimate sea surface density, spiciness, haline contraction and thermal expansion coefficients. For the first time, we illustrate how useful are these satellite derived parameters to fully characterize the surface ocean water masses at large mesoscale.


2021 ◽  
Author(s):  
Kandasamy Priyanka ◽  
Ranjit Kumar Sarangi ◽  
Ramalingam Shanthi ◽  
Durairaj Poornima ◽  
Ayyappan Saravanakumar

Abstract A spatial and temporal variation of sea surface salinity (SSS) is vital to understand the dynamics of the seasonal and inter-annual changes in the marine environment. In the present study, Soil Moisture Active-Passive (SMAP) derived daily SSS product and Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua) remote sensing reflectance (Rrs) based SSS images (Algorithm by Qing et al, 2013), applied in the coastal and offshore region of the Bay of Bengal (BoB). SMAP data validation with in situ data (offshore and coastal water, 10 and 15 points) showed good correlation at offshore water and less correlation at coastal water (R2 = 0.707/0.499, SEE = ± 0.291/±0.546, MNB = -0.0029/-0.0089 and RMSE = ± 0.092/±0.139) respectively. Similarly, MODIS-Aqua Rrs derived salinity data validated with in-situ SSS and observed the correlation as follows with R2 = 0.908/0.891, SEE = ± 2.395/±1.512, MNB = 0.0718/0.0361, RMSE = ± 0.760/±0.316 in offshore and coastal water respectively during April and August 2019. The salinity data observed in the range of 32 to 34.5psu. High SSS mean (35.6-35.8psu) observed during the spring inter-monsoon and low salinity (34.6-34.9psu) observed during winter monsoon phase as depicted from decadal scale interpretation. The present study inferred that MODIS aqua derived SSS is better than SMAP based SSS at coastal and offshore region of the western BoB, irrespective of their resolution and spectral differences. More data points based validation would provide the scope for further improvements and seasonal studies on salinity variability using ocean color sensors reflectance based datasets.


2021 ◽  
Vol 13 (4) ◽  
pp. 811
Author(s):  
Hao Liu ◽  
Zexun Wei

The variability in sea surface salinity (SSS) on different time scales plays an important role in associated oceanic or climate processes. In this study, we compare the SSS on sub-annual, annual, and interannual time scales among ten datasets, including in situ-based and satellite-based SSS products over 2011–2018. Furthermore, the dominant mode on different time scales is compared using the empirical orthogonal function (EOF). Our results show that the largest spread of ten products occurs on the sub-annual time scale. High correlation coefficients (0.6~0.95) are found in the global mean annual and interannual SSSs between individual products and the ensemble mean. Furthermore, this study shows good agreement among the ten datasets in representing the dominant mode of SSS on the annual and interannual time scales. This analysis provides information on the consistency and discrepancy of datasets to guide future use, such as improvements to ocean data assimilation and the quality of satellite-based data.


2014 ◽  
Vol 119 (9) ◽  
pp. 6171-6189 ◽  
Author(s):  
Wenqing Tang ◽  
Simon H. Yueh ◽  
Alexander G. Fore ◽  
Akiko Hayashi

2021 ◽  
pp. 1
Author(s):  
Yaru Guo ◽  
Yuanlong Li ◽  
Fan Wang ◽  
Yuntao Wei

AbstractNingaloo Niño – the interannually occurring warming episode in the southeast Indian Ocean (SEIO) – has strong signatures in ocean temperature and circulation and exerts profound impacts on regional climate and marine biosystems. Analysis of observational data and eddy-resolving regional ocean model simulations reveals that the Ningaloo Niño/Niña can also induce pronounced variability in ocean salinity, causing large-scale sea surface salinity (SSS) freshening of 0.15–0.20 psu in the SEIO during its warm phase. Model experiments are performed to understand the underlying processes. This SSS freshening is mutually caused by the increased local precipitation (~68%) and enhanced fresh-water transport of the Indonesian Throughflow (ITF; ~28%) during Ningaloo Niño events. The effects of other processes, such as local winds and evaporation, are secondary (~18%). The ITF enhances the southward fresh-water advection near the eastern boundary, which is critical in causing the strong freshening (> 0.20 psu) near the Western Australian coast. Owing to the strong modulation effect of the ITF, SSS near the coast bears a higher correlation with the El Niño-Southern Oscillation (0.57, 0.77, and 0.70 with Niño-3, Niño-4, and Niño-3.4 indices, respectively) than sea surface temperature (-0.27, -0.42, and -0.35) during 1993-2016. Yet, an idealized model experiment with artificial damping for salinity anomaly indicates that ocean salinity has limited impact on ocean near-surface stratification and thus minimal feedback effect on the warming of Ningaloo Niño.


Sign in / Sign up

Export Citation Format

Share Document