Is there any improvement in simulation of wintertime Western Pacific teleconnection pattern and associated climate anomalies in CMIP6 comparing with CMIP5 models?

2021 ◽  
pp. 1-75
Author(s):  
Hasi Aru ◽  
Wen Chen ◽  
Shangfeng Chen

AbstractThe western Pacific pattern (WP) is one of the most important atmospheric teleconnections over the Northern Hemisphere (NH) in boreal winter, which plays key roles in regulating weather and climate variations over many parts of the NH. This study evaluates ability of the coupled models participated in CMIP5 and CMIP6 in capturing the spatial pattern, dominant frequency, and associated climate anomalies of the winter WP. Ensemble means of the CMIP5 and CMIP6 models well capture spatial structures of the WP, with slightly higher skills for the CMIP6. However, the northern (southern) centre of the WP is shifted westward (eastward) relative to the observations, and the strength of the northern centre is overestimated in most CMIP5 and CMIP6 models. CMIP6 shows an improvement in simulating the dominant periodicity of the WP. WP-related climatic anomalies in most parts of the NH can be well simulated. However, there exists a large spread across the models in simulating surface air temperature (SAT) anomalies in Russian Far East and Northwest North America, which is attributable to the diversity of the intensity of the WP’s northern lobe. Most CMIP5 and CMIP6 models largely overestimate the WP-related precipitation anomalies over Siberia, which is partly due to the overestimation of mean precipitation there. Furthermore, most models simulate a close relation of the WP and Arctic Oscillation (AO), which does not exist in observation. The CMIP5 and CMIP6 models with weak WP-AO relations have better ability than the models with strong WP-AO relations in capturing the WP-related SAT and precipitation anomalies over the NH, especially over Eurasia.

2021 ◽  
Author(s):  
Zhaomin Ding ◽  
Renguang Wu

AbstractThis study investigates the impact of sea ice and snow changes on surface air temperature (SAT) trends on the multidecadal time scale over the mid- and high-latitudes of Eurasia during boreal autumn, winter and spring based on a 30-member ensemble simulations of the Community Earth System Model (CESM). A dynamical adjustment method is used to remove the internal component of circulation-induced SAT trends. The leading mode of dynamically adjusted SAT trends is featured by same-sign anomalies extending from northern Europe to central Siberia and to the Russian Far East, respectively, during boreal spring and autumn, and confined to western Siberia during winter. The internally generated component of sea ice concentration trends over the Barents-Kara Seas contributes to the differences in the thermodynamic component of internal SAT trends across the ensemble over adjacent northern Siberia during all the three seasons. The sea ice effect is largest in autumn and smallest in winter. Eurasian snow changes contribute to the spread in dynamically adjusted SAT trends as well around the periphery of snow covered region by modulating surface heat flux changes. The snow effect is identified over northeast Europe-western Siberia in autumn, north of the Caspian Sea in winter, and over eastern Europe-northern Siberia in spring. The effects of sea ice and snow on the SAT trends are realized mainly by modulating upward shortwave and longwave radiation fluxes.


2016 ◽  
Vol 29 (22) ◽  
pp. 8249-8267 ◽  
Author(s):  
Jian Shi ◽  
Weihong Qian

Abstract Using the daily mean anomalies of atmospheric variables from the NCEP Reanalysis-1 (NCEP R1), this study reveals the connection between anomalous zonal activities of the South Asian high (SAH) and Eurasian climate anomalies in boreal summer. An analysis of variance identifies two major domains with larger geopotential height variability located in the eastern and western flanks of the SAH at around 100 and 150 hPa, respectively. For both eastern and western domains, extreme events are selected during 1981–2014 when normalized height anomalies are greater than 1.0 (less than −1.0) standard deviation for at least 10 consecutive days. Based on these events, four SAH modes that include strong and weak Tibetan modes (STM and WTM, respectively) and strong and weak Iranian modes (SIM and WIM, respectively) are defined to depict the zonal SAH features. The positive composite in the eastern (western) domain indicates the STM (SIM) manifests a robust wavelike pattern with an anomalous low at 150 hPa, and surface cold and wet anomalies over Mongolia and northern China (Kazakhstan and western Siberia) are surrounded by three anomalous highs at 150 hPa and surface warm and dry anomalies over Eurasia. Opposite distributions are also evident in the negative composites of the two domains (WTM and WIM). The surface air temperature anomalies are the downward extension of an anomalous air column aloft while the precipitation anomalies are directly associated with the height anomalies above the air column.


2018 ◽  
Vol 31 (21) ◽  
pp. 9001-9014 ◽  
Author(s):  
Hainan Gong ◽  
Lin Wang ◽  
Wen Zhou ◽  
Wen Chen ◽  
Renguang Wu ◽  
...  

This study revisits the northern mode of East Asian winter monsoon (EAWM) variation and investigates its response to global warming based on the ERA dataset and outputs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) models. Results show that the observed variation in East Asian surface air temperature (EAT) is tightly coupled with sea level pressure variation in the expanded Siberian high (SH) region during boreal winter. The first singular value decomposition (SVD) mode of the EAT and SH explains 95% of the squared covariance in observations from 1961 to 2005, which actually represents the northern mode of EAWM variation. Meanwhile, the first SVD mode of the EAT and SH is verified to be equivalent to the first empirical orthogonal function mode (EOF1) of the EAT and SH, respectively. Since the leading mode of the temperature variation is significantly influenced by radiative forcing in a rapidly warming climate, for reliable projection of long-term changes in the northern mode of the EAWM, we further employ the EOF1 mode of the SH to represent the northern mode of EAWM variation. The models can well reproduce this coupling between the EAT and SH in historical simulations. Meanwhile, a robust weakening of the northern mode of the EAWM is found in the RCP4.5 scenario, and with stronger warming in the RCP8.5 scenario, the weakening of the EAWM is more pronounced. It is found that the weakening of the northern mode of the EAWM can contribute 6.7% and 9.4% of the warming trend in northern East Asian temperature under the RCP4.5 and RCP8.5 scenarios, respectively.


2015 ◽  
Vol 28 (6) ◽  
pp. 2187-2202 ◽  
Author(s):  
Hainan Gong ◽  
Lin Wang ◽  
Wen Chen ◽  
Debashis Nath ◽  
Gang Huang ◽  
...  

Abstract The influence of El Niño–Southern Oscillation (ENSO) on the East Asian–western Pacific (EAWP) climate in boreal winter is investigated in the phase 5 of the Coupled Model Intercomparison Project (CMIP5) model results and then compared to that in the phase 3 (CMIP3) results. In particular, the role played by the differences among models in ENSO properties, including the amplitude and longitudinal extension of ENSO’s sea surface temperature (SST) pattern, is analyzed. Results show that an eastward shrinking of ENSO’s SST pattern leads to quite weak circulation and climatic responses over the EAWP regions in the models. On the contrary, a westward expansion of the SST pattern shifts the anomalous Walker circulation too far west. The resultant precipitation anomalies and lower-tropospheric atmospheric Rossby wave responses both extend unrealistically into the Indian Ocean, and the hemispheric asymmetry of the Rossby wave response is missing. All these features lead to unrealistic climatic impacts of ENSO over the EAWP regions. In contrast to the above two cases, a reasonable longitudinal extension of ENSO’s SST pattern corresponds to better ENSO teleconnections over the EAWP regions. Nevertheless, the atmospheric responses over the western Pacific are still located farther west than observed, implying a common bias of CMIP5 models. In this case, a larger amplitude of ENSO variability to some extent helps to reduce model biases and facilitate better climatic responses to ENSO in the EAWP regions. Compared with CMIP3 models, CMIP5 models perform better in representing ENSO’s impacts on the East Asian winter climate.


2012 ◽  
Vol 25 (2) ◽  
pp. 425-446 ◽  
Author(s):  
Xiaosong Yang ◽  
Timothy DelSole

Abstract This paper applies a new field significance test to establish the existence and consistency of ENSO teleconnection patterns across models and observations. An ENSO teleconnection pattern is defined as a field of regression coefficients between an index of the tropical Pacific sea surface temperature and a field of variables such as surface air temperature or precipitation. The test is applied to boreal winter and summer in six continents using observations and hindcasts from the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) and the ENSEMBLE-based predictions of climate changes and their impacts (ENSEMBLES) projects. This comparison represents one of the most comprehensive and up-to-date assessments of the extent to which ENSO teleconnection patterns exist and can be reproduced by coupled models. Statistically significant ENSO teleconnection patterns are detected in both observations and models and in all continents and in both winter and summer seasons, except in two cases: 1) Europe (both seasons and variables), and 2) North America (both variables in boreal summer). Despite many ENSO teleconnection patterns being significant, however, the patterns do not necessarily agree between observations and models. The degree of agreement between models and observations is characterized as “robust,” “moderate,” or “low.” Only Australia and South America are found to have robust agreement between ENSO teleconnection patterns, and then only for limited seasons and variables. Although many of our conclusions regarding teleconnection patterns conform to previous studies, there are exceptions, including the fact that the teleconnection for boreal winter precipitation is generally accepted to exist in Africa but in fact has only low agreement with model simulations, while that in Asia is not widely recognized to exist but is found to be significant and in moderate agreement with model teleconnections.


2020 ◽  
Vol 33 (6) ◽  
pp. 2407-2426 ◽  
Author(s):  
Chen Xing ◽  
Fei Liu ◽  
Bin Wang ◽  
Deliang Chen ◽  
Jian Liu ◽  
...  

AbstractWe analyzed global surface air temperature (SAT) responses to five major tropical volcanic eruptions from 1870 to 2005 using outputs from 97 historical and 58 Atmospheric Model Intercomparison Project (AMIP) runs that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). In observations, there was a 3-yr global cooling trend after the eruption due to reduced shortwave radiation, and a 0.1-K average global-mean SAT recovery, consisting of El Niño–like tropical warming and Eurasian warming, occurred in the first posteruption boreal winter. This global cooling pause was simulated by the multimodel ensemble (MME) mean of the AMIP runs, but not the MME of the historical runs due to the absence of El Niño–like warming. In the historical runs, simulation of El Niño–like warming was influenced by the initial ocean condition (IOC). An El Niño–like response was simulated when the IOC was not in an El Niño state, but the warming was much weaker compared to observations. The Eurasian warming response, despite being reproduced by the MME mean of both AMIP and historical runs, was not as strong as in observations. This is because the simulated positive polar vortex response, an important stratospheric forcing for Eurasian warming, was very weak, which suggests that the CMIP5 models, and even the Climate Forecast System model, underestimate volcanic effects on the stratosphere. Most of the coupled models failed to replicate both the El Niño and the enhanced polar vortex responses, indicating an urgent need for improving air–sea interaction and stratospheric processes in these models.


2014 ◽  
Vol 458 (1) ◽  
pp. 1116-1120 ◽  
Author(s):  
V. I. Byshev ◽  
V. G. Neiman ◽  
V. I. Ponomarev ◽  
Yu. A. Romanov ◽  
I. V. Serykh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document