scholarly journals Systematic Comparison of ENSO Teleconnection Patterns between Models and Observations

2012 ◽  
Vol 25 (2) ◽  
pp. 425-446 ◽  
Author(s):  
Xiaosong Yang ◽  
Timothy DelSole

Abstract This paper applies a new field significance test to establish the existence and consistency of ENSO teleconnection patterns across models and observations. An ENSO teleconnection pattern is defined as a field of regression coefficients between an index of the tropical Pacific sea surface temperature and a field of variables such as surface air temperature or precipitation. The test is applied to boreal winter and summer in six continents using observations and hindcasts from the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) and the ENSEMBLE-based predictions of climate changes and their impacts (ENSEMBLES) projects. This comparison represents one of the most comprehensive and up-to-date assessments of the extent to which ENSO teleconnection patterns exist and can be reproduced by coupled models. Statistically significant ENSO teleconnection patterns are detected in both observations and models and in all continents and in both winter and summer seasons, except in two cases: 1) Europe (both seasons and variables), and 2) North America (both variables in boreal summer). Despite many ENSO teleconnection patterns being significant, however, the patterns do not necessarily agree between observations and models. The degree of agreement between models and observations is characterized as “robust,” “moderate,” or “low.” Only Australia and South America are found to have robust agreement between ENSO teleconnection patterns, and then only for limited seasons and variables. Although many of our conclusions regarding teleconnection patterns conform to previous studies, there are exceptions, including the fact that the teleconnection for boreal winter precipitation is generally accepted to exist in Africa but in fact has only low agreement with model simulations, while that in Asia is not widely recognized to exist but is found to be significant and in moderate agreement with model teleconnections.

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Ran Wang ◽  
Lin Chen ◽  
Tim Li ◽  
Jing-Jia Luo

The Atlantic Niño/Niña, one of the dominant interannual variability in the equatorial Atlantic, exerts prominent influence on the Earth’s climate, but its prediction skill shown previously was unsatisfactory and limited to two to three months. By diagnosing the recently released North American Multimodel Ensemble (NMME) models, we find that the Atlantic Niño/Niña prediction skills are improved, with the multi-model ensemble (MME) reaching five months. The prediction skills are season-dependent. Specifically, they show a marked dip in boreal spring, suggesting that the Atlantic Niño/Niña prediction suffers a “spring predictability barrier” like ENSO. The prediction skill is higher for Atlantic Niña than for Atlantic Niño, and better in the developing phase than in the decaying phase. The amplitude bias of the Atlantic Niño/Niña is primarily attributed to the amplitude bias in the annual cycle of the equatorial sea surface temperature (SST). The anomaly correlation coefficient scores of the Atlantic Niño/Niña, to a large extent, depend on the prediction skill of the Niño3.4 index in the preceding boreal winter, implying that the precedent ENSO may greatly affect the development of Atlantic Niño/Niña in the following boreal summer.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1049
Author(s):  
Xin Li ◽  
Ming Yin ◽  
Xiong Chen ◽  
Minghao Yang ◽  
Fei Xia ◽  
...  

Based on the observation and reanalysis data, the relationship between the Madden–Julian Oscillation (MJO) over the Maritime Continent (MC) and the tropical Pacific–Indian Ocean associated mode was analyzed. The results showed that the MJO over the MC region (95°–150° E, 10° S–10° N) (referred to as the MC–MJO) possesses prominent interannual and interdecadal variations and seasonally “phase-locked” features. MC–MJO is strongest in the boreal winter and weakest in the boreal summer. Winter MC–MJO kinetic energy variation has significant relationships with the El Niño–Southern Oscillation (ENSO) in winter and the Indian Ocean Dipole (IOD) in autumn, but it correlates better with the tropical Pacific–Indian Ocean associated mode (PIOAM). The correlation coefficient between the winter MC–MJO kinetic energy index and the autumn PIOAM index is as high as −0.5. This means that when the positive (negative) autumn PIOAM anomaly strengthens, the MJO kinetic energy over the winter MC region weakens (strengthens). However, the correlation between the MC–MJO convection and PIOAM in winter is significantly weaker. The propagation of MJO over the Maritime Continent differs significantly in the contrast phases of PIOAM. During the positive phase of the PIOAM, the eastward propagation of the winter MJO kinetic energy always fails to move across the MC region and cannot enter the western Pacific. However, during the negative phase of the PIOAM, the anomalies of MJO kinetic energy over the MC is not significantly weakened, and MJO can propagate farther eastward and enter the western Pacific. It should be noted that MJO convection is more likely to extend to the western Pacific in the positive phases of PIOAM than in the negative phases. This is significant different with the propagation of the MJO kinetic energy.


2014 ◽  
Vol 27 (10) ◽  
pp. 3643-3664 ◽  
Author(s):  
June-Yi Lee ◽  
Bin Wang ◽  
Kyong-Hwan Seo ◽  
Jong-Seong Kug ◽  
Yong-Sang Choi ◽  
...  

Abstract Two dominant global-scale teleconnections in the Northern Hemisphere (NH) extratropics during boreal summer season (June–August) have been identified: the western North Pacific–North America (WPNA) and circumglobal teleconnection (CGT) patterns. These teleconnection patterns are of critical importance for the NH summer seasonal climate prediction. Here, how these teleconnections will change under anthropogenic global warming is investigated using representative concentration pathway 4.5 (RCP4.5) experiments by 20 coupled models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). The six best models are selected based on their performance in simulation of the two teleconnection patterns and climatological means and variances of atmospheric circulation, precipitation, and sea surface temperature. The selected models capture the CGT and its relationship with the Indian summer monsoon (ISM) reasonably well. The models can also capture the WPNA circulation pattern but with striking deficiencies in reproducing its associated rainfall anomalies due to poor simulation of the western North Pacific summer monsoon rainfall. The following changes are anticipated in the latter half of twenty-first century under the RCP4.5 scenario: 1) significant weakening of year-to-year variability of the upper-level circulation due to increased atmospheric stability, although the moderate increase in convective heating over the tropics may act to strengthen the variability; 2) intensification of the WPNA pattern and major spectral peaks, particularly over the eastern Pacific–North America and North Atlantic–Europe sectors, which is attributed to the strengthening of its relationship with the preceding mature phase of El Niño–Southern Oscillation (ENSO); and 3) weakening of the CGT due to atmospheric stabilization and decreasing relationship with ISM as well as weakening of the ISM–ENSO relationship.


2021 ◽  
pp. 1-75
Author(s):  
Hasi Aru ◽  
Wen Chen ◽  
Shangfeng Chen

AbstractThe western Pacific pattern (WP) is one of the most important atmospheric teleconnections over the Northern Hemisphere (NH) in boreal winter, which plays key roles in regulating weather and climate variations over many parts of the NH. This study evaluates ability of the coupled models participated in CMIP5 and CMIP6 in capturing the spatial pattern, dominant frequency, and associated climate anomalies of the winter WP. Ensemble means of the CMIP5 and CMIP6 models well capture spatial structures of the WP, with slightly higher skills for the CMIP6. However, the northern (southern) centre of the WP is shifted westward (eastward) relative to the observations, and the strength of the northern centre is overestimated in most CMIP5 and CMIP6 models. CMIP6 shows an improvement in simulating the dominant periodicity of the WP. WP-related climatic anomalies in most parts of the NH can be well simulated. However, there exists a large spread across the models in simulating surface air temperature (SAT) anomalies in Russian Far East and Northwest North America, which is attributable to the diversity of the intensity of the WP’s northern lobe. Most CMIP5 and CMIP6 models largely overestimate the WP-related precipitation anomalies over Siberia, which is partly due to the overestimation of mean precipitation there. Furthermore, most models simulate a close relation of the WP and Arctic Oscillation (AO), which does not exist in observation. The CMIP5 and CMIP6 models with weak WP-AO relations have better ability than the models with strong WP-AO relations in capturing the WP-related SAT and precipitation anomalies over the NH, especially over Eurasia.


2017 ◽  
Vol 30 (18) ◽  
pp. 7141-7155 ◽  
Author(s):  
Seung H. Baek ◽  
Jason E. Smerdon ◽  
Sloan Coats ◽  
A. Park Williams ◽  
Benjamin I. Cook ◽  
...  

Abstract The tree-ring-based North American Drought Atlas (NADA), Monsoon Asia Drought Atlas (MADA), and Old World Drought Atlas (OWDA) collectively yield a near-hemispheric gridded reconstruction of hydroclimate variability over the last millennium. To test the robustness of the large-scale representation of hydroclimate variability across the drought atlases, the joint expression of seasonal climate variability and teleconnections in the NADA, MADA, and OWDA are compared against two global, observation-based PDSI products. Predominantly positive (negative) correlations are determined between seasonal precipitation (surface air temperature) and collocated tree-ring-based PDSI, with average Pearson’s correlation coefficients increasing in magnitude from boreal winter to summer. For precipitation, these correlations tend to be stronger in the boreal winter and summer when calculated for the observed PDSI record, while remaining similar for temperature. Notwithstanding these differences, the drought atlases robustly express teleconnection patterns associated with El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the Pacific decadal oscillation (PDO), and the Atlantic multidecadal oscillation (AMO). These expressions exist in the drought atlas estimates of boreal summer PDSI despite the fact that these modes of climate variability are dominant in boreal winter, with the exception of the AMO. ENSO and NAO teleconnection patterns in the drought atlases are particularly consistent with their well-known dominant expressions in boreal winter and over the OWDA domain, respectively. Collectively, the findings herein confirm that the joint Northern Hemisphere drought atlases robustly reflect large-scale patterns of hydroclimate variability on seasonal to multidecadal time scales over the twentieth century and are likely to provide similarly robust estimates of hydroclimate variability prior to the existence of widespread instrumental data.


2017 ◽  
Vol 30 (8) ◽  
pp. 2785-2810 ◽  
Author(s):  
Yohan Ruprich-Robert ◽  
Rym Msadek ◽  
Frederic Castruccio ◽  
Stephen Yeager ◽  
Tom Delworth ◽  
...  

The climate impacts of the observed Atlantic multidecadal variability (AMV) are investigated using the GFDL CM2.1 and the NCAR CESM1 coupled climate models. The model North Atlantic sea surface temperatures are restored to fixed anomalies corresponding to an estimate of the internally driven component of the observed AMV. Both models show that during boreal summer the AMV alters the Walker circulation and generates precipitation anomalies over the whole tropical belt. A warm phase of the AMV yields reduced precipitation over the western United States, drier conditions over the Mediterranean basin, and wetter conditions over northern Europe. During boreal winter, the AMV modulates by a factor of about 2 the frequency of occurrence of El Niño and La Niña events. This response is associated with anomalies over the Pacific that project onto the interdecadal Pacific oscillation pattern (i.e., Pacific decadal oscillation–like anomalies in the Northern Hemisphere and a symmetrical pattern in the Southern Hemisphere). This winter response is a lagged adjustment of the Pacific Ocean to the AMV forcing in summer. Most of the simulated global-scale impacts are driven by the tropical part of the AMV, except for the winter North Atlantic Oscillation–like response over the North Atlantic–European region, which is driven by both the subpolar and tropical parts of the AMV. The teleconnections between the Pacific and Atlantic basins alter the direct North Atlantic local response to the AMV, which highlights the importance of using a global coupled framework to investigate the climate impacts of the AMV. The similarity of the two model responses gives confidence that impacts described in this paper are robust.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 813 ◽  
Author(s):  
Ye Yang ◽  
Naru Xie ◽  
Meng Gao

The influence of large-scale teleconnection patterns, Western Pacific (WP), Arctic Oscillation (AO) and El Niño-Southern Oscillation (ENSO), on the minimum surface air temperature (Tmin) anomalies and extremes over East Asia during the boreal winter from 1979 to 2017 were investigated by the composite analysis in terms of atmospheric and oceanic processes. The relationship between the Tmin and the geopotential height at 500 hPa (Z500) as well as sea surface temperature (SST) were first examined. Then we explored and estimated the contribution of the teleconnection patterns to the occurrence of extremely cold days and months quantitatively, and discussed other key factors in relation to the cold extremes. The WP and AO patterns play an important part in the prevalence of significant Tmin variability, whereas the effect of ENSO is relatively weak. Most of the cold extremes tend to appear in the negative phase of teleconnections, while there some extremes that occur in the opposite phase. In addition, the extreme months are more related to the preferred phase of the dominant pattern when compared to days. We conclude that the daily extremes are primarily triggered by the local-synoptic atmospheric circulations embedded in the large-scale teleconnection patterns, while the monthly extremes have a closer relationship with these low-frequency patterns.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 514 ◽  
Author(s):  
Shi ◽  
Zhang ◽  
Wang ◽  
Suolangtajie

The daily fields from three reanalysis datasets are utilized to explore the subseasonal influence of teleconnection patterns on the surface air temperature (SAT) over southern China. Due to the similarity of the results from the different datasets, the ensemble mean is then used in this study. After applying the false discovery rate to the significance test, the composite results reveal that positive Western Pacific (WP) events, East Atlantic (EA) events, Scandinavian (SCA) events, and Eastern Atlantic/Western Russia (EAWR) events are the teleconnection events that have an influence on SAT anomalies over southern China. The timing of inducing significant SAT anomalies over southern China is similar among positive WPevents, EA events and EAWR events, i.e., approximately the first 5-day period after their peak day. In contrast, SCA events exert a lagged significant influence on SAT, i.e., during approximately the second 6-day period after their peak day. Therefore, considering that significant circulation anomalies generally begin to appear at least 4 days before the peak day, these teleconnection events could be used as subseasonal predictors for SAT anomalies over southern China.


Sign in / Sign up

Export Citation Format

Share Document