scholarly journals Mechanisms determining diversity of ENSO-driven equatorial precipitation anomalies

2021 ◽  
pp. 1-47

Abstract The longitudinal location of precipitation anomalies over the equatorial Pacific shows a distinctive feature with the westernmost location for La Niña, the easternmost location for eastern-Pacific (EP) El Niño and somewhere between for central-Pacific (CP) El Niño, even though the center of the sea surface temperature anomaly (SSTA) for La Niña is located slightly east of that of CP El Niño. The mechanisms for such a precipitation diversity were investigated through idealized model simulations and moisture and moist static energy budget analyses. It is revealed that the boundary layer convergence anomalies associated with the precipitation diversity are mainly induced by underlying SSTA through the Lindzen-Nigam mechanism, that is, their longitudinal locations are mainly controlled by the meridional and zonal distributions of the ENSO SSTA. The westward shift of the precipitation anomaly center during La Niña relative to that during CP El Niño is primarily caused by the combined effects of nonlinear zonal moist enthalpy advection anomalies and the Lindzen-Nigam mechanism mentioned above. Such a zonal diversity is further enhanced by the “convection-cloud-longwave radiation” feedback, the SST-induced latent heat flux anomalies and the advection of mean moist enthalpy by anomalous winds. This diversity in the longitudinal location of precipitation anomalies has contributions to the diversities in the longitudinal locations of anomalous Walker Circulation and western North Pacific anomalous anticyclone/cyclone among the three types of ENSO.

2018 ◽  
Vol 31 (2) ◽  
pp. 693-725 ◽  
Author(s):  
Dimitrios Giannakis ◽  
Joanna Slawinska

The coupled atmosphere–ocean variability of the Indo-Pacific domain on seasonal to multidecadal time scales is investigated in CCSM4 and in observations through nonlinear Laplacian spectral analysis (NLSA). It is found that ENSO modes and combination modes of ENSO with the annual cycle exhibit a seasonally synchronized southward shift of equatorial surface zonal winds and thermocline adjustment consistent with terminating El Niño and La Niña events. The surface winds associated with these modes also generate teleconnections between the Pacific and Indian Oceans, leading to SST anomalies characteristic of the Indian Ocean dipole. The family of NLSA ENSO modes is used to study El Niño–La Niña asymmetries, and it is found that a group of secondary ENSO modes with more rapidly decorrelating temporal patterns contributes significantly to positively skewed SST and zonal wind statistics. Besides ENSO, fundamental and combination modes representing the tropospheric biennial oscillation (TBO) are found to be consistent with mechanisms for seasonally synchronized biennial variability of the Asian–Australian monsoon and Walker circulation. On longer time scales, a multidecadal pattern referred to as the west Pacific multidecadal mode (WPMM) is established to significantly modulate ENSO and TBO activity, with periods of negative SST anomalies in the western tropical Pacific favoring stronger ENSO and TBO variability. This behavior is attributed to the fact that cold WPMM phases feature anomalous decadal westerlies in the tropical central Pacific, as well as an anomalously flat zonal thermocline profile in the equatorial Pacific. Moreover, the WPMM is found to correlate significantly with decadal precipitation over Australia.


Author(s):  
Swadhin Behera ◽  
Toshio Yamagata

The El Niño Modoki/La Niña Modoki (ENSO Modoki) is a newly acknowledged face of ocean-atmosphere coupled variability in the tropical Pacific Ocean. The oceanic and atmospheric conditions associated with the El Niño Modoki are different from that of canonical El Niño, which is extensively studied for its dynamics and worldwide impacts. A typical El Niño event is marked by a warm anomaly of sea surface temperature (SST) in the equatorial eastern Pacific. Because of the associated changes in the surface winds and the weakening of coastal upwelling, the coasts of South America suffer from widespread fish mortality during the event. Quite opposite of this characteristic change in the ocean condition, cold SST anomalies prevail in the eastern equatorial Pacific during the El Niño Modoki events, but with the warm anomalies intensified in the central Pacific. The boreal winter condition of 2004 is a typical example of such an event, when a tripole pattern is noticed in the SST anomalies; warm central Pacific flanked by cold eastern and western regions. The SST anomalies are coupled to a double cell in anomalous Walker circulation with rising motion in the central parts and sinking motion on both sides of the basin. This is again a different feature compared to the well-known single-cell anomalous Walker circulation during El Niños. La Niña Modoki is the opposite phase of the El Niño Modoki, when a cold central Pacific is flanked by warm anomalies on both sides.The Modoki events are seen to peak in both boreal summer and winter and hence are not seasonally phase-locked to a single seasonal cycle like El Niño/La Niña events. Because of this distinction in the seasonality, the teleconnection arising from these events will vary between the seasons as teleconnection path will vary depending on the prevailing seasonal mean conditions in the atmosphere. Moreover, the Modoki El Niño/La Niña impacts over regions such as the western coast of the United States, the Far East including Japan, Australia, and southern Africa, etc., are opposite to those of the canonical El Niño/La Niña. For example, the western coasts of the United States suffer from severe droughts during El Niño Modoki, whereas those regions are quite wet during El Niño. The influences of Modoki events are also seen in tropical cyclogenesis, stratosphere warming of the Southern Hemisphere, ocean primary productivity, river discharges, sea level variations, etc. A remarkable feature associated with Modoki events is the decadal flattening of the equatorial thermocline and weakening of zonal thermal gradient. The associated ocean-atmosphere conditions have caused frequent and persistent developments of Modoki events in recent decades.


2021 ◽  
pp. 1-58
Author(s):  
Hanna Heidemann ◽  
Joachim Ribbe ◽  
Tim Cowan ◽  
Benjamin J. Henley ◽  
Christa Pudmenzky ◽  
...  

AbstractMonsoonal rainfall varies substantially in Northern Australia (AUMR) on interannual, decadal and longer time scales, profoundly impacting natural systems and agricultural communities. Some of this variability arises in response to sea surface temperature (SST) variability in the Indo-Pacific linked to both the El Niño-Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). Here we use observations to investigate unresolved issues regarding the influence of the IPO and ENSO on AUMR. Specifically, we show that during negative IPO phases, central Pacific (CP) El Niño events are associated with below average rainfall over northeast Australia, an anomalous anticyclonic pattern to the northwest of Australia, and eastward moisture advection towards the Dateline. In contrast, CP La Niña events (distinct from eastern Pacific La Niña events) during negative IPO phases drive significantly wet conditions over much of northern Australia, a strengthened Walker Circulation, and large-scale moisture flux convergence. During positive IPO phases, the impact of CP El Niño and CP La Niña events on AUMR is weaker. The influence of central Pacific SSTs on AUMR has been stronger during the recent (post-1999) negative IPO phase. The extent to which this strengthening is associated with climate change or merely natural, internal variability is not known.


2006 ◽  
Vol 19 (17) ◽  
pp. 4378-4396 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The present study documents the influence of El Niño and La Niña events on the spread and predictability of rainfall, surface pressure, and 500-hPa geopotential height, and contrasts the relative contribution of signal and noise changes to the predictability change based on a long-term integration of an interactive ensemble coupled general circulation model. It is found that the pattern of the El Niño–Southern Oscillation (ENSO)-induced noise change for rainfall follows closely that of the corresponding signal change in most of the tropical regions. The noise for tropical Pacific surface pressure is larger (smaller) in regions of lower (higher) mean pressure. The ENSO-induced noise change for 500-hPa height displays smaller spatial scales compared to and has no systematic relationship with the signal change. The predictability for tropical rainfall and surface pressure displays obvious contrasts between the summer and winter over the Bay of Bengal, the western North Pacific, and the tropical southwestern Indian Ocean. The predictability for tropical 500-hPa height is higher in boreal summer than in boreal winter. In the equatorial central Pacific, the predictability for rainfall is much higher in La Niña years than in El Niño years. This occurs because of a larger percent reduction in the amplitude of noise compared to the percent decrease in the magnitude of signal from El Niño to La Niña years. A consistent change is seen in the predictability for surface pressure near the date line. In the western North and South Pacific, the predictability for boreal winter rainfall is higher in El Niño years than in La Niña years. This is mainly due to a stronger signal in El Niño years compared to La Niña years. The predictability for 500-hPa height increases over most of the Tropics in El Niño years. Over western tropical Pacific–Australia and East Asia, the predictability for boreal winter surface pressure and 500-hPa height is higher in El Niño years than in La Niña years. The predictability change for 500-hPa height is primarily due to the signal change.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Wan-Jiao Song ◽  
Qi-Guang Wang

The summer precipitation produced by the East Asian summer monsoon (EASM) is significantly affecting agriculture and socioeconomics. Based on the Precipitation Reconstruction dataset in East China from 1950 to 2017, we investigate the spatiotemporal variations of summer precipitation, influencing environmental factors and their relation with the EASM and the Pacific Decadal Oscillation (PDO) in both central Pacific (CP) El Niño developing and decaying years. Results indicate the following: (1) The evolutions of CP El Niño events modulate the summer precipitation anomalies in East China. In the cool PDO phase, CP El Niño causes enhanced precipitation anomalies in the decaying years but less precipitation anomalies in the developing years, and vice versa for the warm PDO phase. (2) Atmospheric circulation anomalies drive the moisture transportation and combine the motion of western Pacific subtropical high resulting in the variation of precipitation patterns. Anomalous cyclone over the western North Pacific and the sustained Western Pacific Subtropical High (WPSH) are favorable for the increment of summer precipitation. (3) The different CP El Niño-EASM relationship is caused by the influences of PDO on the evolution of CP El Niño. CP El Niño develops slowly (decays rapidly) and is associated with rapidly developing (slowly decaying) anomalous warming in the north Indian Ocean during the developing (decaying) years.


2010 ◽  
Vol 23 (22) ◽  
pp. 6051-6067 ◽  
Author(s):  
Masamichi Ohba ◽  
Daisuke Nohara ◽  
Hiroaki Ueda

Abstract Based on the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel dataset, the relationships between the climatological states and transition processes of simulated ENSO are investigated. The air–sea coupled system of the observed ENSO can remain in the weak cold event for up to 2 yr, whereas those of the warm events tend to turn rapidly into a cold phase. Therefore, the authors separately investigate the simulated transition process of a warm-phase and a cold-phase ENSO in the CMIP3 models. Some of the models reproduce the features of the observed transition process of El Niño/La Niña, whereas most models fail to concurrently reproduce the process during both phases. In the CMIP3 models, four climate models simulate well the rapid transition from El Niño to La Niña. The intensity of a rapid transition of El Niño is mainly related to the intensity of the simulated climatological precipitation over the western–central Pacific (WCP). The models that have strong WCP precipitation can simulate the rapid termination of the equatorial zonal wind in the WCP, which tends to result in the termination of El Niño phase. This relationship is not applicable for the La Niña transition phase. The simulation of La Niña persistency is related to the reflection of off-equatorial Rossby waves at the western boundary of the Pacific and the seasonal evolution of the climatological precipitation in the WCP. Differences in the transition processes between El Niño and La Niña events are fundamentally due to the nonlinear atmospheric (convective) response to SST, which originates from the distribution of climatological SST and its seasonal changes. The results of the present study indicate that a realistic simulation of the climatological state and its seasonality in the WCP are important to be able to simulate the observed transition process of the ENSO.


2016 ◽  
Vol 29 (4) ◽  
pp. 1391-1415 ◽  
Author(s):  
Wei Zhang ◽  
Gabriel A. Vecchi ◽  
Hiroyuki Murakami ◽  
Thomas Delworth ◽  
Andrew T. Wittenberg ◽  
...  

Abstract This study aims to assess whether, and the extent to which, an increase in atmospheric resolution of the Geophysical Fluid Dynamics Laboratory (GFDL) Forecast-Oriented Low Ocean Resolution version of CM2.5 (FLOR) with 50-km resolution and the High-Resolution FLOR (HiFLOR) with 25-km resolution improves the simulation of the El Niño–Southern Oscillation (ENSO)–tropical cyclone (TC) connections in the western North Pacific (WNP). HiFLOR simulates better ENSO–TC connections in the WNP including TC track density, genesis, and landfall than FLOR in both long-term control experiments and sea surface temperature (SST)- and sea surface salinity (SSS)-restoring historical runs (1971–2012). Restoring experiments are performed with SSS and SST restored to observational estimates of climatological SSS and interannually varying monthly SST. In the control experiments of HiFLOR, an improved simulation of the Walker circulation arising from more realistic SST and precipitation is largely responsible for its better performance in simulating ENSO–TC connections in the WNP. In the SST-restoring experiments of HiFLOR, more realistic Walker circulation and steering flow during El Niño and La Niña are responsible for the improved simulation of ENSO–TC connections in the WNP. The improved simulation of ENSO–TC connections with HiFLOR arises from a better representation of SST and better responses of environmental large-scale circulation to SST anomalies associated with El Niño or La Niña. A better representation of ENSO–TC connections in HiFLOR can benefit the seasonal forecasting of TC genesis, track, and landfall; improve understanding of the interannual variation of TC activity; and provide better projection of TC activity under climate change.


2020 ◽  
Vol 8 ◽  
Author(s):  
Wen Zhang ◽  
Xiaoye Zhou ◽  
Pang-Chi Hsu ◽  
Fei Liu

East China has experienced positive precipitation anomalies in post-El Niño summers, mainly in the Yangtze-Huaihe River Valley. This kind of monsoonal rainfall change induced by El Niño, however, is not always the same due to El Niño diversity and mean state change. Here, we use cluster analysis on the post-El Niño (PE) East China summer precipitation anomalies to identify the diversity of this El Niño-induced monsoon change. The result shows that PE East China summer rainfall anomalies mainly display three different modes for all selected 20 El Niño events from 1957 to 2016. Cluster 1 shows the middle and lower reaches of the Yangtze River demonstrate strong wet anomalies, while South and North China are dominated by dry anomalies, similar to a sandwich mode. Cluster 2 is distinguished by dry anomalies over South China and wet anomalies over North China, exhibiting a dipole mode. Compared with Cluster 1, the change caused by Cluster 3 is different, showing negative anomalies over the Yangtze-Huaihe River Valley. The three clusters are correlated with successive events of El Niño, a quick transfer to a strong La Niña and a quick transfer to a weak La Niña respectively. The associated anomalous anticyclone (AAC) focuses on (120°E, 20°N) in Cluster 1, which expands southward for Cluster 2 and moves eastward for Cluster 3. The feedback of AAC-sea surface temperature (SST) mainly works for supporting the AAC in Cluster 1, but it is weak for Cluster 2; the strong easterly anomalies related to La Niña contribute to the AAC location change for Cluster 2. Both AAC-SST feedback and easterly anomalies support the AAC of Cluster 3. The CMIP5 output can capture these diverse responses in circulation except that their simulated AAC for Cluster 1 is significant to the east of the observed.


2017 ◽  
Vol 30 (7) ◽  
pp. 2601-2620 ◽  
Author(s):  
Claudia E. Wieners ◽  
Henk A. Dijkstra ◽  
Will P. M. de Ruijter

The effect of long-term trends and interannual, ENSO-driven variability in the Indian Ocean (IO) on the stability and spatial pattern of ENSO is investigated with an intermediate-complexity two-basin model. The Pacific basin is modeled using a fully coupled (i.e., generating its own background state) Zebiak–Cane model. IO sea surface temperature (SST) is represented by a basinwide warming pattern whose strength is constant or varies at a prescribed lag to ENSO. Both basins are coupled through an atmosphere transferring information between them. For the covarying IO SST, a warm IO during the peak of El Niño (La Niña) dampens (destabilizes) ENSO, and a warm IO during the transition from El Niño to La Niña (La Niña to El Niño) shortens (lengthens) the period. The influence of the IO on the spatial pattern of ENSO is small. For constant IO warming, the ENSO cycle is destabilized because stronger easterlies induce more background upwelling, more thermocline steepening, and a stronger Bjerknes feedback. The SST signal at the east coast weakens or reverses sign with respect to the main ENSO signal [i.e., ENSO resembles central Pacific (CP) El Niños]. This is due to a reduced sensitivity of the SST to thermocline variations in case of a shallow background thermocline, as found near the east coast for a warm IO. With these results, the recent increase in CP El Niño can possibly be explained by the substantial IO (and west Pacific) warming over the last decades.


2013 ◽  
Vol 26 (4) ◽  
pp. 1304-1321 ◽  
Author(s):  
Surendra P. Rauniyar ◽  
Kevin J. E. Walsh

Abstract This study examines the influence of ENSO on the diurnal cycle of rainfall during boreal winter for the period 1998–2010 over the Maritime Continent (MC) and Australia using Tropical Rainfall Measuring Mission (TRMM) and reanalysis data. The diurnal cycles are composited for the ENSO cold (La Niña) and warm (El Niño) phases. The k-means clustering technique is then applied to group the TRMM data into six clusters, each with a distinct diurnal cycle. Despite the alternating patterns of widespread large-scale subsidence and ascent associated with the Walker circulation, which dominates the climate over the MC during the opposing phases of ENSO, many of the islands of the MC show localized differences in rainfall anomalies that depend on the local geography and orography. While ocean regions mostly experience positive rainfall anomalies during La Niña, some local regions over the islands have more rainfall during El Niño. These local features are also associated with anomalies in the amplitude and characteristics of the diurnal cycle in these regions. These differences are also well depicted in large-scale dynamical fields derived from the interim ECMWF Re-Analysis (ERA-Interim).


Sign in / Sign up

Export Citation Format

Share Document