Distinct impacts of ENSO on haze pollution in Beijing-Tianjin-Hebei region between early and late winters

2021 ◽  
pp. 1-66
Author(s):  
Wei Zhao ◽  
Shangfeng Chen ◽  
Hengde Zhang ◽  
Jikang Wang ◽  
Wen Chen ◽  
...  

AbstractThe Beijing-Tianjin-Hebei (BTH) region has encountered increasingly severe and frequent haze pollution during recent decades. This study reveals that the El Niño–Southern Oscillation (ENSO) has distinctive impacts on interannual variations of haze pollution over BTH in early and late winters. The impact of ENSO on the haze pollution over the BTH is strong in early winter, but weak in late winter. In early winter, ENSO-related sea surface temperature anomalies generate double-cell Walker circulation anomalies, with upward motion anomalies over the tropical central-eastern Pacific and tropical Indian Ocean, and downward motion anomalies over tropical western Pacific. The ascending motion and enhanced atmospheric heating anomalies over the tropical Indian Ocean trigger atmospheric teleconnection propagating from North Indian Ocean to East Asia, and result in generation of an anticyclonic anomaly over northeast Asia. The associated southerly anomalies to the west side lead to more serious haze pollution via reducing surface wind speed and increasing low-level humidity and thermal inversion. Strong contribution of the Indian Ocean heating anomalies to the formation of the anticyclonic anomaly over northeast Asia in early winter can be confirmed by atmospheric model numerical experiments. In late winter, vertical motion and precipitation anomalies are weak over tropical Indian Ocean related to ENSO. As such, ENSO cannot induce clear anticyclonic anomaly over northeast Asia via atmospheric teleconnection, and thus has a weak impact on the haze pollution over BTH. Further analysis shows that stronger ENSO-induced atmospheric heating anomalies over tropical Indian Ocean in early winter is partially due to higher mean SST and precipitation there.

2020 ◽  
Author(s):  
Muhammad Adnan Abid ◽  
Fred Kucharski ◽  
Franco Molteni ◽  
In-Sik Kang ◽  
Adrian Tompkins ◽  
...  

<p>El Niño Southern Oscillation (ENSO) have a weak influence on the seasonal mean Euro-Atlantic circulation anomalies during the boreal winter (Dec-Feb) season. Therefore, monthly ENSO teleconnections to Euro-Atlantic region were studied during the boreal winter season for the period 1981-2015 using reanalysis and hindcast dataset. It is shown that the ENSO-forced signal to the Euro-Atlantic circulation anomalies does not persist throughout the boreal winter season. During earlier winter, a positive ENSO phase strongly enforces rainfall dipole anomalies in the tropical Indian Ocean, with increased rainfall over the western tropical Indian Ocean, and reduced in the eastern tropical Indian ocean.  This Indian Ocean rainfall dipole weakens in late winter. During early winter, the Indian Ocean rainfall dipole modifies the subtropical South Asian jet (SAJET) which forces a wavenumber-3 response projecting spatially onto the positive North Atlantic Oscillation (NAO) pattern. On contrary, during late winter, the response in the Euro-Atlantic sector is dominated by the well-known ENSO wavetrain from the tropical Pacific region, involving Pacific North American (PNA) pattern anomalies that project spatially on the negative phase of the NAO. Atmospheric General Circulation Model (AGCM) numerical experiments forced with an Indian Ocean heating dipole anomaly support the hypothesis that the Indian Ocean modulates the SAJET that enforces the Rossby wave propagation to the Euro-Atlantic region in early winter. Moreover, the ECMWF-SEAS5 hindcast dataset reproduces the observed ENSO-forced inter-basin tropical teleconnections transition from early to late winter and their response to the Euro-Atlantic circulation anomalies quite well. Therefore, it is important to understand the tropical inter-basin transition, which may lead to improve the sub-seasonal to seasonal variability and predictability of the Euro-Atlantic circulation anomalies. </p>


2020 ◽  
pp. 1-57
Author(s):  
Muhammad Adnan Abid ◽  
Fred Kucharski ◽  
Franco Molteni ◽  
In-Sik Kang ◽  
Adrian M. Tompkins ◽  
...  

AbstractThe present study focuses on the mechanism that controls the transition of the Euro-Atlantic circulation responses to the El Niño-Southern Oscillation (ENSO) from early (December) to late winter (February) for the period 1981-2015. A positive phase of ENSO induces a precipitation dipole with increased precipitation in the western and reduced precipitation in the eastern tropical Indian Ocean; this occurs mainly during early winter (December) and less so in late winter (February). It is shown that these inter-basin atmospheric teleconnections dominate the response in the Euro-Atlantic sector in early winter by modifying the subtropical South Asian jet (SAJET) and forcing a wavenumber-3 response which projects spatially onto the positive North Atlantic Oscillation (NAO) pattern. On contrary, during late winter, the response in the Euro-Atlantic sector is dominated by the well-known ENSO wave-train from the tropical Pacific region, involving extratropical anomalies that project spatially on the positive phase of the Pacific-North American (PNA) pattern and the negative phase of the NAO pattern. Numerical experiments with an atmospheric model (AGCM) forced by an Indian Ocean heating dipole anomaly support the hypothesis that Indian Ocean modulates the SAJET and enforces the Rossby wave propagation to the Euro-Atlantic region in early winter. These phenomena are also investigated using the ECMWF SEAS5 re-forecast dataset. In SEAS5, the ENSO inter-basin tropical teleconnections, and the response of the Euro-Atlantic circulation anomalies and their change from early to late winter are realistically predicted, although the strength of the early winter signal originated from the Indian Ocean is underestimated.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 849
Author(s):  
Hyun-Ju Lee ◽  
Emilia-Kyung Jin

The global impact of the tropical Indian Ocean and the Western Pacific (IOWP) is expected to increase in the future because this area has been continuously warming due to global warming; however, the impact of the IOWP forcing on West Antarctica has not been clearly revealed. Recently, ice loss in West Antarctica has been accelerated due to the basal melting of ice shelves. This study examines the characteristics and formation mechanisms of the teleconnection between the IOWP and West Antarctica for each season using the Rossby wave theory. To explicitly understand the role of the background flow in the teleconnection process, we conduct linear baroclinic model (LBM) simulations in which the background flow is initialized differently depending on the season. During JJA/SON, the barotropic Rossby wave generated by the IOWP forcing propagates into the Southern Hemisphere through the climatological northerly wind and arrives in West Antarctica; meanwhile, during DJF/MAM, the wave can hardly penetrate the tropical region. This indicates that during the Austral winter and spring, the IOWP forcing and IOWP-region variabilities such as the Indian Ocean Dipole (IOD) and Indian Ocean Basin (IOB) modes should paid more attention to in order to investigate the ice change in West Antarctica.


2012 ◽  
Vol 25 (20) ◽  
pp. 6930-6941 ◽  
Author(s):  
Xia Qu ◽  
Gang Huang

Abstract The tropical Indian Ocean (TIO)’s influence on the South Asia high (SAH)’s intensity experiences a decadal change in the late 1970s; after (before) the decadal shift, the influence is significant (insignificant). The present study investigates the role of tropospheric temperature in relaying the impact of sea surface temperature (SST) to the SAH and the change in the TIO’s influence. During the two epochs, the local tropospheric temperature responses to the TIO warming are distinct—more significant during the second epoch. It is inferred that this change may be responsible for the strengthening of the TIO’s influence on the SAH. Encouragingly, the ensemble simulations accurately capture the time of the decadal change, indicating that the enhanced influence is attributed to the SST forcing. There are two possible reasons for the change in the TIO–SAH relationship. The first reason is the change in the locations of the SST anomalies in the TIO. During the second epoch, positive SST anomalies lie in the Indian Ocean warm pool. Through the background vigorous convection and moist adjustment, the SST anomalies affect largely the tropospheric temperature and thus the SAH. The second reason is the decadal change in mean SST and the SST variability. During the recent decades, both the background SST and the variability of the TIO SST increase, which enhance the influence of the SST anomalies on the atmosphere. The influence of the remote oceanic forcing on the enhanced TIO–SAH relationship and its comparison with the contribution of the TIO SST are also discussed.


2009 ◽  
Vol 22 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Lina Zhang ◽  
Bizheng Wang ◽  
Qingcun Zeng

Abstract The impact of the Madden–Julian oscillation (MJO) on summer rainfall in Southeast China is investigated using the Real-time Multivariate MJO (RMM) index and the observational rainfall data. A marked transition of rainfall patterns from being enhanced to being suppressed is found in Southeast China (east of 105°E and south of 35°N) on intraseasonal time scales as the MJO convective center moves from the Indian Ocean to the western Pacific Ocean. The maximum positive and negative anomalies of regional mean rainfall are in excess of 10% relative to the climatological regional mean. Such different rainfall regimes are associated with the corresponding changes in physical fields such as the western Pacific subtropical high (WPSH), moisture, and vertical motions. When the MJO is mainly over the Indian Ocean, the WPSH shifts farther westward, and the moisture and upward motions in Southeast China are increased. In contrast, when the MJO enters the western Pacific, the WPSH retreats eastward, and the moisture and upward motions in Southeast China are decreased. It is suggested that the MJO may influence summer rainfall in Southeast China through remote and local dynamical mechanisms, which correspond to the rainfall enhancement and suppression, respectively. The remote role is the energy propagation of the Rossby wave forced by the MJO-related heating over the Indian Ocean through the low-level westerly waveguide from the tropical Indian Ocean to Southeast China. The local role is the northward shift of the upward branch of the anomalous meridional circulation when the MJO is over the western Pacific, which causes eastward retreat of the WPSH and suppressed moisture transport toward Southeast China.


2014 ◽  
Vol 27 (18) ◽  
pp. 7086-7101 ◽  
Author(s):  
Zongting Gao ◽  
Zeng-Zhen Hu ◽  
Jieshun Zhu ◽  
Song Yang ◽  
Rong-Hua Zhang ◽  
...  

Abstract In this work, the variability of summer [June–August (JJA)] rainfall in northeast China is examined and its predictors are identified based on observational analyses and atmospheric modeling experiments. At interannual time scales, the summer rainfall anomaly in northeast China is significantly correlated with the rainfall anomaly over the Huang-Huai region (32°–38°N, 105°–120°E) in late spring (April–May). Compared with climatology, an earlier (later) rainy season in the Huang-Huai region favors a wet (dry) summer in northeast China. Also, this connection has strengthened since the late 1970s. In addition to the impact of the sea surface temperature anomaly (SSTA) in the tropical Indian Ocean, the local soil moisture anomalies caused by the rainfall anomaly in the Huang-Huai region in late spring generate summer general circulation anomalies, which contribute to the rainfall anomaly in northeast China. As a result, when compared with the SSTA, the rainfall anomaly in the Huang-Huai region in late spring can be used as another and even better predictor for the summer rainfall anomaly in northeast China. The results from atmospheric general circulation model experiments forced by observed SST confirm the diagnostic results to some extent, including the connection of the rainfall anomaly between the Huang-Huai region in April–May and northeastern China in JJA as well as the influence from SSTA in the tropical Indian Ocean. It is shown that eliminating the internal dynamical processes by using the ensemble mean intensifies the connection, implying that the connection of rainfall variation in the two different seasons/regions may be partially caused by the external forcing (e.g., SSTA in the tropical Indian Ocean).


2010 ◽  
Vol 23 (6) ◽  
pp. 1334-1353 ◽  
Author(s):  
Juan Feng ◽  
Jianping Li ◽  
Yun Li

Abstract Using the NCEP–NCAR reanalysis, the 40-yr ECMWF Re-Analysis (ERA-40), and precipitation data from the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the Australian Bureau of Meteorology, the variability and circulation features influencing southwest Western Australia (SWWA) winter rainfall are investigated. It is found that the climate of southwest Australia bears a strong seasonality in the annual cycle and exhibits a monsoon-like atmospheric circulation, which is called the southwest Australian circulation (SWAC) because of its several distinct features characterizing a monsoonal circulation: the seasonal reversal of winds, alternate wet and dry seasons, and an evident land–sea thermal contrast. The seasonal march of the SWAC in extended winter (May–October) is demonstrated by pentad data. An index based on the dynamics’ normalized seasonality was introduced to describe the behavior and variation of the winter SWAC. It is found that the winter rainfall over SWWA has a significant positive correlation with the SWAC index in both early (May–July) and late (August–October) winter. In weaker winter SWAC years, there is an anticyclonic anomaly over the southern Indian Ocean resulting in weaker westerlies and northerlies, which are not favorable for more rainfall over SWWA, and the opposite combination is true in the stronger winter SWAC years. The SWAC explains not only a large portion of the interannual variability of SWWA rainfall in both early and late winter but also the long-term drying trend over SWWA in early winter. The well-coupled SWAC–SWWA rainfall relationship seems to be largely independent of the well-known effects of large-scale atmospheric circulations such as the southern annular mode (SAM), El Niño–Southern Oscillation (ENSO), Indian Ocean dipole (IOD), and ENSO Modoki (EM). The result offers qualified support for the argument that the monsoon-like circulation may contribute to the rainfall decline in early winter over SWWA. The external forcing of the SWAC is also explored in this study.


2021 ◽  
Vol 34 (3) ◽  
pp. 1047-1060
Author(s):  
Manish K. Joshi ◽  
Muhammad Adnan Abid ◽  
Fred Kucharski

AbstractIn this study the role of an Indian Ocean heating dipole anomaly in the transition of the North Atlantic–European (NAE) circulation response to El Niño–Southern Oscillation (ENSO) from early to late winter is analyzed using a twentieth-century reanalysis and simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). It is shown that in early winter a warm (cold) ENSO event is connected through an atmospheric bridge with positive (negative) rainfall anomalies in the western Indian Ocean and negative (positive) anomalies in the eastern Indian Ocean. The early winter heating dipole, forced by a warm (cold) ENSO event, can set up a wave train emanating from the subtropical South Asian jet region that reaches the North Atlantic and leads to a response that spatially projects onto the positive (negative) phase of the North Atlantic Oscillation. The Indian Ocean heating dipole is partly forced as an atmospheric teleconnection by ENSO, but can also exist independently and is not strongly related to local Indian Ocean sea surface temperature (SST) forcing. The Indian Ocean heating dipole response to ENSO is much weaker in late winter (i.e., February and March) and not able to force significant signals in the North Atlantic region. CMIP5 multimodel ensemble reproduces the early winter Indian Ocean heating dipole response to ENSO and its transition in the North Atlantic region to some extent, but with weaker amplitude. Generally, models that have a strong early winter ENSO response in the subtropical South Asian jet region along with tropical Indian Ocean heating dipole also reproduce the North Atlantic response.


Sign in / Sign up

Export Citation Format

Share Document