scholarly journals Separating the Indian and Pacific Ocean impacts on the Euro-Atlantic response to ENSO and its transition from early to late winter

2020 ◽  
pp. 1-57
Author(s):  
Muhammad Adnan Abid ◽  
Fred Kucharski ◽  
Franco Molteni ◽  
In-Sik Kang ◽  
Adrian M. Tompkins ◽  
...  

AbstractThe present study focuses on the mechanism that controls the transition of the Euro-Atlantic circulation responses to the El Niño-Southern Oscillation (ENSO) from early (December) to late winter (February) for the period 1981-2015. A positive phase of ENSO induces a precipitation dipole with increased precipitation in the western and reduced precipitation in the eastern tropical Indian Ocean; this occurs mainly during early winter (December) and less so in late winter (February). It is shown that these inter-basin atmospheric teleconnections dominate the response in the Euro-Atlantic sector in early winter by modifying the subtropical South Asian jet (SAJET) and forcing a wavenumber-3 response which projects spatially onto the positive North Atlantic Oscillation (NAO) pattern. On contrary, during late winter, the response in the Euro-Atlantic sector is dominated by the well-known ENSO wave-train from the tropical Pacific region, involving extratropical anomalies that project spatially on the positive phase of the Pacific-North American (PNA) pattern and the negative phase of the NAO pattern. Numerical experiments with an atmospheric model (AGCM) forced by an Indian Ocean heating dipole anomaly support the hypothesis that Indian Ocean modulates the SAJET and enforces the Rossby wave propagation to the Euro-Atlantic region in early winter. These phenomena are also investigated using the ECMWF SEAS5 re-forecast dataset. In SEAS5, the ENSO inter-basin tropical teleconnections, and the response of the Euro-Atlantic circulation anomalies and their change from early to late winter are realistically predicted, although the strength of the early winter signal originated from the Indian Ocean is underestimated.

2020 ◽  
Author(s):  
Muhammad Adnan Abid ◽  
Fred Kucharski ◽  
Franco Molteni ◽  
In-Sik Kang ◽  
Adrian Tompkins ◽  
...  

<p>El Niño Southern Oscillation (ENSO) have a weak influence on the seasonal mean Euro-Atlantic circulation anomalies during the boreal winter (Dec-Feb) season. Therefore, monthly ENSO teleconnections to Euro-Atlantic region were studied during the boreal winter season for the period 1981-2015 using reanalysis and hindcast dataset. It is shown that the ENSO-forced signal to the Euro-Atlantic circulation anomalies does not persist throughout the boreal winter season. During earlier winter, a positive ENSO phase strongly enforces rainfall dipole anomalies in the tropical Indian Ocean, with increased rainfall over the western tropical Indian Ocean, and reduced in the eastern tropical Indian ocean.  This Indian Ocean rainfall dipole weakens in late winter. During early winter, the Indian Ocean rainfall dipole modifies the subtropical South Asian jet (SAJET) which forces a wavenumber-3 response projecting spatially onto the positive North Atlantic Oscillation (NAO) pattern. On contrary, during late winter, the response in the Euro-Atlantic sector is dominated by the well-known ENSO wavetrain from the tropical Pacific region, involving Pacific North American (PNA) pattern anomalies that project spatially on the negative phase of the NAO. Atmospheric General Circulation Model (AGCM) numerical experiments forced with an Indian Ocean heating dipole anomaly support the hypothesis that the Indian Ocean modulates the SAJET that enforces the Rossby wave propagation to the Euro-Atlantic region in early winter. Moreover, the ECMWF-SEAS5 hindcast dataset reproduces the observed ENSO-forced inter-basin tropical teleconnections transition from early to late winter and their response to the Euro-Atlantic circulation anomalies quite well. Therefore, it is important to understand the tropical inter-basin transition, which may lead to improve the sub-seasonal to seasonal variability and predictability of the Euro-Atlantic circulation anomalies. </p>


2010 ◽  
Vol 23 (6) ◽  
pp. 1334-1353 ◽  
Author(s):  
Juan Feng ◽  
Jianping Li ◽  
Yun Li

Abstract Using the NCEP–NCAR reanalysis, the 40-yr ECMWF Re-Analysis (ERA-40), and precipitation data from the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the Australian Bureau of Meteorology, the variability and circulation features influencing southwest Western Australia (SWWA) winter rainfall are investigated. It is found that the climate of southwest Australia bears a strong seasonality in the annual cycle and exhibits a monsoon-like atmospheric circulation, which is called the southwest Australian circulation (SWAC) because of its several distinct features characterizing a monsoonal circulation: the seasonal reversal of winds, alternate wet and dry seasons, and an evident land–sea thermal contrast. The seasonal march of the SWAC in extended winter (May–October) is demonstrated by pentad data. An index based on the dynamics’ normalized seasonality was introduced to describe the behavior and variation of the winter SWAC. It is found that the winter rainfall over SWWA has a significant positive correlation with the SWAC index in both early (May–July) and late (August–October) winter. In weaker winter SWAC years, there is an anticyclonic anomaly over the southern Indian Ocean resulting in weaker westerlies and northerlies, which are not favorable for more rainfall over SWWA, and the opposite combination is true in the stronger winter SWAC years. The SWAC explains not only a large portion of the interannual variability of SWWA rainfall in both early and late winter but also the long-term drying trend over SWWA in early winter. The well-coupled SWAC–SWWA rainfall relationship seems to be largely independent of the well-known effects of large-scale atmospheric circulations such as the southern annular mode (SAM), El Niño–Southern Oscillation (ENSO), Indian Ocean dipole (IOD), and ENSO Modoki (EM). The result offers qualified support for the argument that the monsoon-like circulation may contribute to the rainfall decline in early winter over SWWA. The external forcing of the SWAC is also explored in this study.


2021 ◽  
pp. 1-66
Author(s):  
Wei Zhao ◽  
Shangfeng Chen ◽  
Hengde Zhang ◽  
Jikang Wang ◽  
Wen Chen ◽  
...  

AbstractThe Beijing-Tianjin-Hebei (BTH) region has encountered increasingly severe and frequent haze pollution during recent decades. This study reveals that the El Niño–Southern Oscillation (ENSO) has distinctive impacts on interannual variations of haze pollution over BTH in early and late winters. The impact of ENSO on the haze pollution over the BTH is strong in early winter, but weak in late winter. In early winter, ENSO-related sea surface temperature anomalies generate double-cell Walker circulation anomalies, with upward motion anomalies over the tropical central-eastern Pacific and tropical Indian Ocean, and downward motion anomalies over tropical western Pacific. The ascending motion and enhanced atmospheric heating anomalies over the tropical Indian Ocean trigger atmospheric teleconnection propagating from North Indian Ocean to East Asia, and result in generation of an anticyclonic anomaly over northeast Asia. The associated southerly anomalies to the west side lead to more serious haze pollution via reducing surface wind speed and increasing low-level humidity and thermal inversion. Strong contribution of the Indian Ocean heating anomalies to the formation of the anticyclonic anomaly over northeast Asia in early winter can be confirmed by atmospheric model numerical experiments. In late winter, vertical motion and precipitation anomalies are weak over tropical Indian Ocean related to ENSO. As such, ENSO cannot induce clear anticyclonic anomaly over northeast Asia via atmospheric teleconnection, and thus has a weak impact on the haze pollution over BTH. Further analysis shows that stronger ENSO-induced atmospheric heating anomalies over tropical Indian Ocean in early winter is partially due to higher mean SST and precipitation there.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1605
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza

Contrasting effects of the tropical Indian and Pacific Oceans on the atmospheric circulation and rainfall interannual variations over South America during southern winter are assessed considering the effects of the warm Indian Ocean basin-wide (IOBW) and El Niño (EN) events, and of the cold IOBW and La Niña events, which are represented by sea surface temperature-based indices. Analyses are undertaken using total and partial correlations. When the effects of the two warm events are isolated from each other, the contrasts between the associated rainfall anomalies in most of South America become accentuated. In particular, EN relates to anomalous wet conditions, and the warm IOBW event to opposite conditions in extensive areas of the 5° S–25° S band. These effects in the 5° S–15° S sector are due to the anomalous regional Hadley cells, with rising motions in this band for the EN and sinking motions for the warm IOBW event. Meanwhile, in subtropical South America, the opposite effects of the EN and warm IOBW seem to be due to the presence of anomalous anticyclone and cyclone and associated moisture transport, respectively. These opposite effects of the warm IOBW and EN events on the rainfall in part of central South America might explain the weak rainfall relation in this region to the El Niño–Southern Oscillation (ENSO). Our results emphasize the important role of the tropical Indian Ocean in the South American climate and environment during southern winter.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1437
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza ◽  
...  

This paper examines the effects of the tropical Pacific Ocean (TPO) and Indian Ocean Dipole (IOD) modes in the interannual variations of austral spring rainfall over South America (SA). The TPO mode refers to the El Niño-Southern Oscillation (ENSO). The isolated effects between IOD and TPO were estimated, events were chosen from the residual TPO (R-TPO) or residual IOD (R-IOD), and the IOD (TPO) effects for the R-TPO (R-IOD) composites were removed from the variables. One relevant result was the nonlinear precipitation response to R-TPO and R-IOD. This feature was accentuated for the R-IOD composites. The positive R-IOD composite showed significant negative precipitation anomalies along equatorial SA east of 55° W and in subtropical western SA, and showed positive anomalies in northwestern SA and central Brazil. The negative R-IOD composite indicated significant positive precipitation anomalies in northwestern Amazon, central–eastern Brazil north of 20° S, and western subtropical SA, and negative anomalies were found in western SA south of 30° S. This nonlinearity was likely due to the distinct atmospheric circulation responses to the anomalous heating sources located in longitudinally distinct regions: the western tropical Indian Ocean and areas neighboring Indonesia. The results obtained in this study might be relevant for climate monitoring and modeling studies.


2009 ◽  
Vol 22 (3) ◽  
pp. 615-632 ◽  
Author(s):  
Hsun-Ying Kao ◽  
Jin-Yi Yu

Abstract Surface observations and subsurface ocean assimilation datasets are examined to contrast two distinct types of El Niño–Southern Oscillation (ENSO) in the tropical Pacific: an eastern-Pacific (EP) type and a central-Pacific (CP) type. An analysis method combining empirical orthogonal function (EOF) analysis and linear regression is used to separate these two types. Correlation and composite analyses based on the principal components of the EOF were performed to examine the structure, evolution, and teleconnection of these two ENSO types. The EP type of ENSO is found to have its SST anomaly center located in the eastern equatorial Pacific attached to the coast of South America. This type of ENSO is associated with basinwide thermocline and surface wind variations and shows a strong teleconnection with the tropical Indian Ocean. In contrast, the CP type of ENSO has most of its surface wind, SST, and subsurface anomalies confined in the central Pacific and tends to onset, develop, and decay in situ. This type of ENSO appears less related to the thermocline variations and may be influenced more by atmospheric forcing. It has a stronger teleconnection with the southern Indian Ocean. Phase-reversal signatures can be identified in the anomaly evolutions of the EP-ENSO but not for the CP-ENSO. This implies that the CP-ENSO may occur more as events or epochs than as a cycle. The EP-ENSO has experienced a stronger interdecadal change with the dominant period of its SST anomalies shifted from 2 to 4 yr near 1976/77, while the dominant period for the CP-ENSO stayed near the 2-yr band. The different onset times of these two types of ENSO imply that the difference between the EP and CP types of ENSO could be caused by the timing of the mechanisms that trigger the ENSO events.


2009 ◽  
Vol 22 (7) ◽  
pp. 1850-1858 ◽  
Author(s):  
Jin-Yi Yu ◽  
Fengpeng Sun ◽  
Hsun-Ying Kao

Abstract The Community Climate System Model, version 3 (CCSM3), is known to produce many aspects of El Niño–Southern Oscillation (ENSO) realistically, but the simulated ENSO exhibits an overly strong biennial periodicity. Hypotheses on the cause of this excessive biennial tendency have thus far focused primarily on the model’s biases within the tropical Pacific. This study conducts CCSM3 experiments to show that the model’s biases in simulating the Indian Ocean mean sea surface temperatures (SSTs) and the Indian and Australian monsoon variability also contribute to the biennial ENSO tendency. Two CCSM3 simulations are contrasted: a control run that includes global ocean–atmosphere coupling and an experiment in which the air–sea coupling in the tropical Indian Ocean is turned off by replacing simulated SSTs with an observed monthly climatology. The decoupling experiment removes CCSM3’s warm bias in the tropical Indian Ocean and reduces the biennial variability in Indian and Australian monsoons by about 40% and 60%, respectively. The excessive biennial ENSO is found to reduce dramatically by about 75% in the decoupled experiment. It is shown that the biennial monsoon variability in CCSM3 excites an anomalous surface wind pattern in the western Pacific that projects well into the wind pattern associated with the onset phase of the simulated biennial ENSO. Therefore, the biennial monsoon variability is very effective in exciting biennial ENSO variability in CCSM3. The warm SST bias in the tropical Indian Ocean also increases ENSO variability by inducing stronger mean surface easterlies along the equatorial Pacific, which strengthen the Pacific ocean–atmosphere coupling and enhance the ENSO intensity.


2020 ◽  
Author(s):  
Yaqi Wang ◽  
Juan Feng ◽  
Jianping Li ◽  
Ran An ◽  
Lanning Wang

<p>The variability of boreal spring Hadley circulation (HC) over the Asian monsoon domain over the last four decades is explored. The climatological distribution of the regional HC is symmetric of the equator, with the ascending branch around the equator and sinking branch around the subtropics in each hemisphere. The first dominant mode (EOF1) of the regional HC is equatorial asymmetric, with the main body in the Southern Hemisphere (SH) and the ascending branch to the north of the equator. This mode is mainly characterized by interannual variation and is related to El Niño-Southern Oscillation (ENSO). Significant negative sea surface temperature (SST) anomalies are observed over the tropical Indian Ocean (TIO) along with the development of La Niña events; however, the magnitude of SST anomalies in the southern Indian Ocean is greater than that in the northern counterpart, contributing to EOF1 formation. The spatial distribution of the second dominant mode (EOF2) is with the main body lying in the Northern Hemisphere (NH) and the ascending branch located to the south of the equator. The temporal variation of this mode is connected to the warming of the TIO. The warming rate of the southern TIO SST is faster than that in the northern counterpart, resulting in the southward migration of the rising branch. The above result indicates the critical role of the meridional distribution of SST on the variability of the regional HC.</p>


2012 ◽  
Vol 25 (18) ◽  
pp. 6318-6329 ◽  
Author(s):  
Wenju Cai ◽  
Peter van Rensch ◽  
Tim Cowan ◽  
Harry H. Hendon

Abstract Recent research has shown that the climatic impact from El Niño–Southern Oscillation (ENSO) on middle latitudes west of the western Pacific (e.g., southeast Australia) during austral spring (September–November) is conducted via the tropical Indian Ocean (TIO). However, it is not clear whether this impact pathway is symmetric about the positive and negative phases of ENSO and the Indian Ocean dipole (IOD). It is shown that a strong asymmetry does exist. For ENSO, only the impact from El Niño is conducted through the TIO pathway; the impact from La Niña is delivered through the Pacific–South America pattern. For the IOD, a greater convection anomaly and wave train response occurs during positive IOD (pIOD) events than during negative IOD (nIOD) events. This “impact asymmetry” is consistent with the positive skewness of the IOD, principally due to a negative skewness of sea surface temperature (SST) anomalies in the east IOD (IODE) pole. In the IODE region, convection anomalies are more sensitive to a per unit change of cold SST anomalies than to the same unit change of warm SST anomalies. This study shows that the IOD skewness occurs despite the greater damping, rather than due to a breakdown of this damping as suggested by previous studies. This IOD impact asymmetry provides an explanation for much of the reduction in spring rainfall over southeast Australia during the 2000s. Key to this rainfall reduction is the increased occurrences of pIOD events, more so than the lack of nIOD events.


2021 ◽  
Vol 34 (3) ◽  
pp. 1047-1060
Author(s):  
Manish K. Joshi ◽  
Muhammad Adnan Abid ◽  
Fred Kucharski

AbstractIn this study the role of an Indian Ocean heating dipole anomaly in the transition of the North Atlantic–European (NAE) circulation response to El Niño–Southern Oscillation (ENSO) from early to late winter is analyzed using a twentieth-century reanalysis and simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). It is shown that in early winter a warm (cold) ENSO event is connected through an atmospheric bridge with positive (negative) rainfall anomalies in the western Indian Ocean and negative (positive) anomalies in the eastern Indian Ocean. The early winter heating dipole, forced by a warm (cold) ENSO event, can set up a wave train emanating from the subtropical South Asian jet region that reaches the North Atlantic and leads to a response that spatially projects onto the positive (negative) phase of the North Atlantic Oscillation. The Indian Ocean heating dipole is partly forced as an atmospheric teleconnection by ENSO, but can also exist independently and is not strongly related to local Indian Ocean sea surface temperature (SST) forcing. The Indian Ocean heating dipole response to ENSO is much weaker in late winter (i.e., February and March) and not able to force significant signals in the North Atlantic region. CMIP5 multimodel ensemble reproduces the early winter Indian Ocean heating dipole response to ENSO and its transition in the North Atlantic region to some extent, but with weaker amplitude. Generally, models that have a strong early winter ENSO response in the subtropical South Asian jet region along with tropical Indian Ocean heating dipole also reproduce the North Atlantic response.


Sign in / Sign up

Export Citation Format

Share Document