A Monsoon-Like Southwest Australian Circulation and Its Relation with Rainfall in Southwest Western Australia

2010 ◽  
Vol 23 (6) ◽  
pp. 1334-1353 ◽  
Author(s):  
Juan Feng ◽  
Jianping Li ◽  
Yun Li

Abstract Using the NCEP–NCAR reanalysis, the 40-yr ECMWF Re-Analysis (ERA-40), and precipitation data from the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the Australian Bureau of Meteorology, the variability and circulation features influencing southwest Western Australia (SWWA) winter rainfall are investigated. It is found that the climate of southwest Australia bears a strong seasonality in the annual cycle and exhibits a monsoon-like atmospheric circulation, which is called the southwest Australian circulation (SWAC) because of its several distinct features characterizing a monsoonal circulation: the seasonal reversal of winds, alternate wet and dry seasons, and an evident land–sea thermal contrast. The seasonal march of the SWAC in extended winter (May–October) is demonstrated by pentad data. An index based on the dynamics’ normalized seasonality was introduced to describe the behavior and variation of the winter SWAC. It is found that the winter rainfall over SWWA has a significant positive correlation with the SWAC index in both early (May–July) and late (August–October) winter. In weaker winter SWAC years, there is an anticyclonic anomaly over the southern Indian Ocean resulting in weaker westerlies and northerlies, which are not favorable for more rainfall over SWWA, and the opposite combination is true in the stronger winter SWAC years. The SWAC explains not only a large portion of the interannual variability of SWWA rainfall in both early and late winter but also the long-term drying trend over SWWA in early winter. The well-coupled SWAC–SWWA rainfall relationship seems to be largely independent of the well-known effects of large-scale atmospheric circulations such as the southern annular mode (SAM), El Niño–Southern Oscillation (ENSO), Indian Ocean dipole (IOD), and ENSO Modoki (EM). The result offers qualified support for the argument that the monsoon-like circulation may contribute to the rainfall decline in early winter over SWWA. The external forcing of the SWAC is also explored in this study.

2020 ◽  
pp. 1-57
Author(s):  
Muhammad Adnan Abid ◽  
Fred Kucharski ◽  
Franco Molteni ◽  
In-Sik Kang ◽  
Adrian M. Tompkins ◽  
...  

AbstractThe present study focuses on the mechanism that controls the transition of the Euro-Atlantic circulation responses to the El Niño-Southern Oscillation (ENSO) from early (December) to late winter (February) for the period 1981-2015. A positive phase of ENSO induces a precipitation dipole with increased precipitation in the western and reduced precipitation in the eastern tropical Indian Ocean; this occurs mainly during early winter (December) and less so in late winter (February). It is shown that these inter-basin atmospheric teleconnections dominate the response in the Euro-Atlantic sector in early winter by modifying the subtropical South Asian jet (SAJET) and forcing a wavenumber-3 response which projects spatially onto the positive North Atlantic Oscillation (NAO) pattern. On contrary, during late winter, the response in the Euro-Atlantic sector is dominated by the well-known ENSO wave-train from the tropical Pacific region, involving extratropical anomalies that project spatially on the positive phase of the Pacific-North American (PNA) pattern and the negative phase of the NAO pattern. Numerical experiments with an atmospheric model (AGCM) forced by an Indian Ocean heating dipole anomaly support the hypothesis that Indian Ocean modulates the SAJET and enforces the Rossby wave propagation to the Euro-Atlantic region in early winter. These phenomena are also investigated using the ECMWF SEAS5 re-forecast dataset. In SEAS5, the ENSO inter-basin tropical teleconnections, and the response of the Euro-Atlantic circulation anomalies and their change from early to late winter are realistically predicted, although the strength of the early winter signal originated from the Indian Ocean is underestimated.


2013 ◽  
Vol 26 (7) ◽  
pp. 2222-2246 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Lance M. Leslie

Abstract Over the past century, and especially after the 1970s, rainfall observations show an increase (decrease) of the wet summer (winter) season rainfall over northwest (southwest) Western Australia. The rainfall in central west Western Australia (CWWA), however, has exhibited comparatively much weaker coastal trends, but a more prominent inland increase during the wet summer season. Analysis of seasonally averaged rainfall data from a group of stations, representative of both the coastal and inland regions of CWWA, revealed that rainfall trends during the 1958–2010 period in the wet months of November–April were primarily associated with El Niño–Southern Oscillation (ENSO), and with the southern annular mode (SAM) farther inland. During the wet months of May–October, the Indian Ocean dipole (IOD) showed the most robust relationships. Those results hold when the effects of ENSO or IOD are excluded, and were confirmed using a principal component analysis of sea surface temperature (SST) anomalies, rainfall wavelet analyses, and point-by-point correlations of rainfall with global SST anomaly fields. Although speculative, given their long-term averages, reanalysis data suggest that from 1958 to 2010 the increase in CWWA inland rainfall largely is attributable to an increasing cyclonic anomaly trend over CWWA, bringing onshore moist tropical flow to the Pilbara coast. During May–October, the flow anomaly exhibits a transition from an onshore to offshore flow regime in the 2001–10 decade, which is consistent with the observed weaker drying trend during this period.


2013 ◽  
Vol 141 (7) ◽  
pp. 2416-2431 ◽  
Author(s):  
Stuart A. Browning ◽  
Ian D. Goodwin

Abstract Subtropical maritime low pressure systems frequently impact Australia’s eastern seaboard. Closed circulation lows in the Tasman Sea region are termed East Coast Cyclones (ECC); they can evolve in a range of climatic environments and have proven most destructive during the late autumn–winter period. Using criteria based on pressure gradients, inferred wind field, and duration, an objectively determined database of ECC occurrences is established to explore large-scale influences on ECC evolution. Subclassification based on evolutionary trajectory reveals two dominant storm types during late autumn–winter: easterly trough lows (ETL) and southern secondary lows (SSL). Synoptic composites are used to investigate the climatological evolution of each storm type. ETL cyclogenesis occurs along the eastern seaboard at the confluence of warm moist subtropical easterlies and cool air over the continent that is advected from higher latitudes. SSL develop when a cold extratropical cyclone moves equatorward and interacts with warm moist conditions in the Tasman Sea. At seasonal time scales, a complex interplay of tropical and extratropical influences contributes to high-frequency storm seasons. ETL are more frequent during neutral or positive phases of the El Niño–Southern Oscillation, cool sea surface temperature anomalies (SSTAs) in the tropical Indian Ocean, and neutral to positive southern annular mode phases. SSL are more frequent during years with warm SSTAs in the eastern Indian Ocean, warm SSTAs in the western Pacific, and high-latitude blocking.


2012 ◽  
Vol 140 (5) ◽  
pp. 1665-1682 ◽  
Author(s):  
Alexander Pui ◽  
Ashish Sharma ◽  
Agus Santoso ◽  
Seth Westra

Abstract The relationship between seasonal aggregate rainfall and large-scale climate modes, particularly the El Niño–Southern Oscillation (ENSO), has been the subject of a significant and ongoing research effort. However, relatively little is known about how the character of individual rainfall events varies as a function of each of these climate modes. This study investigates the change in rainfall occurrence, intensity, and storm interevent time at both daily and subdaily time scales in east Australia, as a function of indices for ENSO, the Indian Ocean dipole (IOD), and the southern annular mode (SAM), with a focus on the cool season months. Long-record datasets have been used to sample a large variety of climate events for better statistical significance. Results using both the daily and subdaily rainfall datasets consistently show that it is the occurrence of rainfall events, rather than the average intensity of rainfall during the events, which is most strongly influenced by each of the climate modes. This is shown to be most likely associated with changes to the time between wet spells. Furthermore, it is found that despite the recent attention in the research literature on other climate modes, ENSO remains the leading driver of rainfall variability over east Australia, particularly farther inland during the winter and spring seasons. These results have important implications for how water resources are managed, as well as how the implications of large-scale climate modes are included in rainfall models to best capture interannual and longer-scale variability.


2013 ◽  
Vol 33 ◽  
pp. 3-12 ◽  
Author(s):  
C. Collins ◽  
A. Mascarenhas ◽  
R. Martinez

Abstract. From 27 March to 5 April 2009, upper ocean velocities between the Galápagos Islands and Ecuador were measured using a vessel mounted ADCP. A region of possible strong cross-hemisphere exchange was observed immediately to the east of the Galápagos, where a shallow (200 m) 300 km wide northeastward surface flow transported 7–11 Sv. Underlying this strong northeastward surface current, a southward flowing undercurrent was observed which was at least 600 m thick, 100 km wide, and had an observed transport of 7–8 Sv. Next to the Ecuador coast, the shallow (< 200 m) Ecuador Coastal Current was observed to extend offshore 100 km with strongest flow, 0.33 m s−1, near the surface. Immediately to the west of the Ecuador Coastal Current, flow was directed eastward and southward into the beginnings of the Peru-Chile Countercurrent. The integral of the surface currents between the Galápagos and Ecuador agreed well with observed sea level differences. Although the correlation of the sea level differences with large scale climate indices (Niño3 and the Southern Oscillation Index) was significant, more than half of the sea level variability was not explained. Seasonal variability of the sea level difference indicated that sea level was 2 cm higher at the Galápagos during late winter and early spring, which could be associated with the pattern of northward surface flows observed by R/V Knorr.


2021 ◽  
Author(s):  
Lian-Yi Zhang ◽  
Yan Du ◽  
Wenju Cai ◽  
Zesheng Chen ◽  
Tomoki Tozuka ◽  
...  

&lt;p&gt;This study identifies a new triggering mechanism of the Indian Ocean Dipole (IOD) from the Southern Hemisphere. This mechanism is independent from the El Ni&amp;#241;o/Southern Oscillation (ENSO) and tends to induce the IOD before its canonical peak season. The joint effects of this mechanism and ENSO may explain different lifetimes and strengths of the IOD. During its positive phase, development of sea surface temperature cold anomalies commences in the southern Indian Ocean, accompanied by an anomalous subtropical high system and anomalous southeasterly winds. The eastward movement of these anomalies enhances the monsoon off Sumatra-Java during May-August, leading to an early positive IOD onset. The pressure variability in the subtropical area is related with the Southern Annular Mode, suggesting a teleconnection between high-latitude and mid-latitude climate that can further affect the tropics. To include the subtropical signals may help model prediction of the IOD event.&lt;/p&gt;


2006 ◽  
Vol 19 (10) ◽  
pp. 1948-1969 ◽  
Author(s):  
Matthew H. England ◽  
Caroline C. Ummenhofer ◽  
Agus Santoso

Abstract Interannual rainfall extremes over southwest Western Australia (SWWA) are examined using observations, reanalysis data, and a long-term natural integration of the global coupled climate system. The authors reveal a characteristic dipole pattern of Indian Ocean sea surface temperature (SST) anomalies during extreme rainfall years, remarkably consistent between the reanalysis fields and the coupled climate model but different from most previous definitions of SST dipoles in the region. In particular, the dipole exhibits peak amplitudes in the eastern Indian Ocean adjacent to the west coast of Australia. During dry years, anomalously cool waters appear in the tropical/subtropical eastern Indian Ocean, adjacent to a region of unusually warm water in the subtropics off SWWA. This dipole of anomalous SST seesaws in sign between dry and wet years and appears to occur in phase with a large-scale reorganization of winds over the tropical/subtropical Indian Ocean. The wind field alters SST via anomalous Ekman transport in the tropical Indian Ocean and via anomalous air–sea heat fluxes in the subtropics. The winds also change the large-scale advection of moisture onto the SWWA coast. At the basin scale, the anomalous wind field can be interpreted as an acceleration (deceleration) of the Indian Ocean climatological mean anticyclone during dry (wet) years. In addition, dry (wet) years see a strengthening (weakening) and coinciding southward (northward) shift of the subpolar westerlies, which results in a similar southward (northward) shift of the rain-bearing fronts associated with the subpolar front. A link is also noted between extreme rainfall years and the Indian Ocean Dipole (IOD). Namely, in some years the IOD acts to reinforce the eastern tropical pole of SST described above, and to strengthen wind anomalies along the northern flank of the Indian Ocean anticyclone. In this manner, both tropical and extratropical processes in the Indian Ocean generate SST and wind anomalies off SWWA, which lead to moisture transport and rainfall extremes in the region. An analysis of the seasonal evolution of the climate extremes reveals a progressive amplification of anomalies in SST and atmospheric circulation toward a wintertime maximum, coinciding with the season of highest SWWA rainfall. The anomalies in SST can appear as early as the summertime months, however, which may have important implications for predictability of SWWA rainfall extremes.


2020 ◽  
Author(s):  
Michelle Maclennan ◽  
Jan Lenaerts

&lt;p&gt;High snowfall events on Thwaites Glacier are a key influencer of its ice mass change. In this study, we diagnose the mechanisms for orographic precipitation on Thwaites Glacier by analyzing the atmospheric conditions that lead to high snowfall events. A high-resolution regional climate model, RACMO2, is used in conjunction with MERRA-2 and ERA5 reanalysis to map snowfall and associated atmospheric conditions over the Amundsen Sea Embayment. We examine these conditions during high snowfall events over Thwaites Glacier to characterize the drivers of the precipitation and their spatial and temporal variability. Then we examine the seasonal differences in the associated weather patterns and their correlations with El Nino Southern Oscillation and the Southern Annular Mode. Understanding the large-scale atmospheric drivers of snowfall events allows us to recognize how these atmospheric drivers and consequent snowfall climatology will change in the future, which will ultimately improve predictions of accumulation on Thwaites Glacier.&lt;/p&gt;


2020 ◽  
Author(s):  
Muhammad Adnan Abid ◽  
Fred Kucharski ◽  
Franco Molteni ◽  
In-Sik Kang ◽  
Adrian Tompkins ◽  
...  

&lt;p&gt;El Ni&amp;#241;o Southern Oscillation (ENSO) have a weak influence on the seasonal mean Euro-Atlantic circulation anomalies during the boreal winter (Dec-Feb) season. Therefore, monthly ENSO teleconnections to Euro-Atlantic region were studied during the boreal winter season for the period 1981-2015 using reanalysis and hindcast dataset. It is shown that the ENSO-forced signal to the Euro-Atlantic circulation anomalies does not persist throughout the boreal winter season. During earlier winter, a positive ENSO phase strongly enforces rainfall dipole anomalies in the tropical Indian Ocean, with increased rainfall over the western tropical Indian Ocean, and reduced in the eastern tropical Indian ocean. &amp;#160;This Indian Ocean rainfall dipole weakens in late winter. During early winter, the Indian Ocean rainfall dipole modifies the subtropical South Asian jet (SAJET) which forces a wavenumber-3 response projecting spatially onto the positive North Atlantic Oscillation (NAO) pattern. On contrary, during late winter, the response in the Euro-Atlantic sector is dominated by the well-known ENSO wavetrain from the tropical Pacific region, involving Pacific North American (PNA) pattern anomalies that project spatially on the negative phase of the NAO. Atmospheric General Circulation Model (AGCM) numerical experiments forced with an Indian Ocean heating dipole anomaly support the hypothesis that the Indian Ocean modulates the SAJET that enforces the Rossby wave propagation to the Euro-Atlantic region in early winter. Moreover, the ECMWF-SEAS5 hindcast dataset reproduces the observed ENSO-forced inter-basin tropical teleconnections transition from early to late winter and their response to the Euro-Atlantic circulation anomalies quite well. Therefore, it is important to understand the tropical inter-basin transition, which may lead to improve the sub-seasonal to seasonal variability and predictability of the Euro-Atlantic circulation anomalies.&amp;#160;&lt;/p&gt;


2013 ◽  
Vol 13 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Madan Sigdel ◽  
Motoyoshi Ikeda

Summer precipitation dominates over winter one for the annual total in south Asia, while the winter condition is still important for agricultural productions. Rain gauge data over Nepal were analyzed with large-scale atmospheric patterns such as El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). In the period of June to September, summer monsoon rainfall over Nepal (SMRN) is generally higher in the eastern region along with a peak in the central region associated with the local orography. Its interannual variability was found to be correlated with the southern oscillation index (SOI): i.e., when La Niña occurs, eastward moisture flux is blocked over Bay of Bengal (BOB) by the anomalous Walker circulation extending from the Pacific. The local-scale condition for higher SMRN is implied by a main moisture route along the eastern arm of the low pressure in northeastern India, as proved by a significant correlation between SMRN and the northward moisture flux. In winter (DJFM), precipitation occurs more in the western region. The higher winter precipitation over Nepal (WPN) was correlated almost equally with positive Dipole Mode Index (DMI) over the Indian Ocean and also SOI, while the relationship with SOI is reversed from summer. A clear linkage was suggested with moisture flux from the Arabian Sea and the further western region. Thus, possible impacts of anomalous precipitation have to be predicted under the relationship with the large-scale indices depending on seasons. Nepal Journal of Science and Technology Vol. 13, No. 1 (2012) 115-123 DOI: http://dx.doi.org/10.3126/njst.v13i1.7450


Sign in / Sign up

Export Citation Format

Share Document