The impact of the tropical Indian Ocean on South Asian High in boreal summer

2011 ◽  
Vol 28 (2) ◽  
pp. 421-432 ◽  
Author(s):  
Gang Huang ◽  
Xia Qu ◽  
Kaiming Hu
2021 ◽  
Vol 9 ◽  
Author(s):  
Wenjing Shi ◽  
Qingzhe Wang ◽  
Ziniu Xiao ◽  
Wei Cheng ◽  
Wei Duan

As two important components of the Asian summer monsoon system, the intensities of South Asian High (SAH) and Somali jet (SMJ) in summer exhibit both interannual and decadal variabilities. On the interdecadal timescale, the temporal evolution of the SAH intensity is in phase with that of the SMJ intensity. By comparison, we find that both of them evolve synchronously with the Atlantic Multidecadal Oscillation (AMO), with AMO cold/warm phases corresponding to the weakening/strengthening of SAH and SMJ. Further diagnoses indicate that the interdecadal variabilities of the SAH and SMJ intensities in summer may be modulated by the AMO phase. Mechanistically, this modulation appears to be achieved via an interdecadal Silk Road pattern (SRP)-like wave train along the Asian westerly jet and Matsuno–Gill tropical atmospheric response. The cold SST anomaly over extratropical North Atlantic related to the AMO firstly induces an anomalous high over Western Europe and produces a well-organized wave train between 30°N and 60°N. The anomalous Iranian Plateau low along with the wave train path leads to a weakened SAH. Besides, the AMO-related cold SST anomalies over tropical North Atlantic cool the tropical tropospheric atmosphere through the moist adjustment process and produce a Matsuno–Gill-like atmospheric response covering the tropical Indian Ocean. Due to the Matsuno–Gill response, subsidence motion anomalies over the central tropical Indian Ocean corresponding to a result in increased lower-level divergence and upper-level convergence are excited over the tropical Indian Ocean. Finally, the tropical Indian Ocean divergence in the lower troposphere leads to the weakened summer SMJ, and the tropical Indian Ocean convergence in the upper troposphere results in the decrease and northward displacement of SAH in summer.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 849
Author(s):  
Hyun-Ju Lee ◽  
Emilia-Kyung Jin

The global impact of the tropical Indian Ocean and the Western Pacific (IOWP) is expected to increase in the future because this area has been continuously warming due to global warming; however, the impact of the IOWP forcing on West Antarctica has not been clearly revealed. Recently, ice loss in West Antarctica has been accelerated due to the basal melting of ice shelves. This study examines the characteristics and formation mechanisms of the teleconnection between the IOWP and West Antarctica for each season using the Rossby wave theory. To explicitly understand the role of the background flow in the teleconnection process, we conduct linear baroclinic model (LBM) simulations in which the background flow is initialized differently depending on the season. During JJA/SON, the barotropic Rossby wave generated by the IOWP forcing propagates into the Southern Hemisphere through the climatological northerly wind and arrives in West Antarctica; meanwhile, during DJF/MAM, the wave can hardly penetrate the tropical region. This indicates that during the Austral winter and spring, the IOWP forcing and IOWP-region variabilities such as the Indian Ocean Dipole (IOD) and Indian Ocean Basin (IOB) modes should paid more attention to in order to investigate the ice change in West Antarctica.


2016 ◽  
Vol 29 (22) ◽  
pp. 8249-8267 ◽  
Author(s):  
Jian Shi ◽  
Weihong Qian

Abstract Using the daily mean anomalies of atmospheric variables from the NCEP Reanalysis-1 (NCEP R1), this study reveals the connection between anomalous zonal activities of the South Asian high (SAH) and Eurasian climate anomalies in boreal summer. An analysis of variance identifies two major domains with larger geopotential height variability located in the eastern and western flanks of the SAH at around 100 and 150 hPa, respectively. For both eastern and western domains, extreme events are selected during 1981–2014 when normalized height anomalies are greater than 1.0 (less than −1.0) standard deviation for at least 10 consecutive days. Based on these events, four SAH modes that include strong and weak Tibetan modes (STM and WTM, respectively) and strong and weak Iranian modes (SIM and WIM, respectively) are defined to depict the zonal SAH features. The positive composite in the eastern (western) domain indicates the STM (SIM) manifests a robust wavelike pattern with an anomalous low at 150 hPa, and surface cold and wet anomalies over Mongolia and northern China (Kazakhstan and western Siberia) are surrounded by three anomalous highs at 150 hPa and surface warm and dry anomalies over Eurasia. Opposite distributions are also evident in the negative composites of the two domains (WTM and WIM). The surface air temperature anomalies are the downward extension of an anomalous air column aloft while the precipitation anomalies are directly associated with the height anomalies above the air column.


2012 ◽  
Vol 25 (20) ◽  
pp. 6930-6941 ◽  
Author(s):  
Xia Qu ◽  
Gang Huang

Abstract The tropical Indian Ocean (TIO)’s influence on the South Asia high (SAH)’s intensity experiences a decadal change in the late 1970s; after (before) the decadal shift, the influence is significant (insignificant). The present study investigates the role of tropospheric temperature in relaying the impact of sea surface temperature (SST) to the SAH and the change in the TIO’s influence. During the two epochs, the local tropospheric temperature responses to the TIO warming are distinct—more significant during the second epoch. It is inferred that this change may be responsible for the strengthening of the TIO’s influence on the SAH. Encouragingly, the ensemble simulations accurately capture the time of the decadal change, indicating that the enhanced influence is attributed to the SST forcing. There are two possible reasons for the change in the TIO–SAH relationship. The first reason is the change in the locations of the SST anomalies in the TIO. During the second epoch, positive SST anomalies lie in the Indian Ocean warm pool. Through the background vigorous convection and moist adjustment, the SST anomalies affect largely the tropospheric temperature and thus the SAH. The second reason is the decadal change in mean SST and the SST variability. During the recent decades, both the background SST and the variability of the TIO SST increase, which enhance the influence of the SST anomalies on the atmosphere. The influence of the remote oceanic forcing on the enhanced TIO–SAH relationship and its comparison with the contribution of the TIO SST are also discussed.


2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


2018 ◽  
Vol 18 (16) ◽  
pp. 11973-11990 ◽  
Author(s):  
Alina Fiehn ◽  
Birgit Quack ◽  
Irene Stemmler ◽  
Franziska Ziska ◽  
Kirstin Krüger

Abstract. Oceanic very short-lived substances (VSLSs), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Indian summer monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly averaged and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean reasonably well. Using monthly resolved emissions, the main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric injection in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric injection of bromoform is in the same range whether using monthly averaged or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in the highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary by up to 50 % between using monthly averaged and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine injection from the tropical Indian Ocean and west Pacific critically depend on the seasonality and spatial distribution of the VSLS emissions.


2020 ◽  
Vol 142 (1-2) ◽  
pp. 393-406
Author(s):  
Zhongkai Bo ◽  
Xiangwen Liu ◽  
Weizong Gu ◽  
Anning Huang ◽  
Yongjie Fang ◽  
...  

Abstract In this paper, we evaluate the capability of the Beijing Climate Center Climate System Model (BCC-CSM) in simulating and forecasting the boreal summer intraseasonal oscillation (BSISO), using its simulation and sub-seasonal to seasonal (S2S) hindcast results. Results show that the model can generally simulate the spatial structure of the BSISO, but give relatively weaker strength, shorter period, and faster transition of BSISO phases when compared with the observations. This partially limits the model’s capability in forecasting the BSISO, with a useful skill of only 9 days. Two sets of hindcast experiments with improved atmospheric and atmosphere/ocean initial conditions (referred to as EXP1 and EXP2, respectively) are conducted to improve the BSISO forecast. The BSISO forecast skill is increased by 2 days with the optimization of atmospheric initial conditions only (EXP1), and is further increased by 1 day with the optimization of both atmospheric and oceanic initial conditions (EXP2). These changes lead to a final skill of 12 days, which is comparable to the skills of most models participated in the S2S Prediction Project. In EXP1 and EXP2, the BSISO forecast skills are improved for most initial phases, especially phases 1 and 2, denoting a better description for BSISO propagation from the tropical Indian Ocean to the western North Pacific. However, the skill is considerably low and insensitive to initial conditions for initial phase 6 and target phase 3, corresponding to the BSISO convection’s active-to-break transition over the western North Pacific and BSISO convection’s break-to-active transition over the tropical Indian Ocean and Maritime Continent. This prediction barrier also exists in many forecast models of the S2S Prediction Project. Our hindcast experiments with different initial conditions indicate that the remarkable model errors over the Maritime Continent and subtropical western North Pacific may largely account for the prediction barrier.


2009 ◽  
Vol 22 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Lina Zhang ◽  
Bizheng Wang ◽  
Qingcun Zeng

Abstract The impact of the Madden–Julian oscillation (MJO) on summer rainfall in Southeast China is investigated using the Real-time Multivariate MJO (RMM) index and the observational rainfall data. A marked transition of rainfall patterns from being enhanced to being suppressed is found in Southeast China (east of 105°E and south of 35°N) on intraseasonal time scales as the MJO convective center moves from the Indian Ocean to the western Pacific Ocean. The maximum positive and negative anomalies of regional mean rainfall are in excess of 10% relative to the climatological regional mean. Such different rainfall regimes are associated with the corresponding changes in physical fields such as the western Pacific subtropical high (WPSH), moisture, and vertical motions. When the MJO is mainly over the Indian Ocean, the WPSH shifts farther westward, and the moisture and upward motions in Southeast China are increased. In contrast, when the MJO enters the western Pacific, the WPSH retreats eastward, and the moisture and upward motions in Southeast China are decreased. It is suggested that the MJO may influence summer rainfall in Southeast China through remote and local dynamical mechanisms, which correspond to the rainfall enhancement and suppression, respectively. The remote role is the energy propagation of the Rossby wave forced by the MJO-related heating over the Indian Ocean through the low-level westerly waveguide from the tropical Indian Ocean to Southeast China. The local role is the northward shift of the upward branch of the anomalous meridional circulation when the MJO is over the western Pacific, which causes eastward retreat of the WPSH and suppressed moisture transport toward Southeast China.


2014 ◽  
Vol 27 (18) ◽  
pp. 7086-7101 ◽  
Author(s):  
Zongting Gao ◽  
Zeng-Zhen Hu ◽  
Jieshun Zhu ◽  
Song Yang ◽  
Rong-Hua Zhang ◽  
...  

Abstract In this work, the variability of summer [June–August (JJA)] rainfall in northeast China is examined and its predictors are identified based on observational analyses and atmospheric modeling experiments. At interannual time scales, the summer rainfall anomaly in northeast China is significantly correlated with the rainfall anomaly over the Huang-Huai region (32°–38°N, 105°–120°E) in late spring (April–May). Compared with climatology, an earlier (later) rainy season in the Huang-Huai region favors a wet (dry) summer in northeast China. Also, this connection has strengthened since the late 1970s. In addition to the impact of the sea surface temperature anomaly (SSTA) in the tropical Indian Ocean, the local soil moisture anomalies caused by the rainfall anomaly in the Huang-Huai region in late spring generate summer general circulation anomalies, which contribute to the rainfall anomaly in northeast China. As a result, when compared with the SSTA, the rainfall anomaly in the Huang-Huai region in late spring can be used as another and even better predictor for the summer rainfall anomaly in northeast China. The results from atmospheric general circulation model experiments forced by observed SST confirm the diagnostic results to some extent, including the connection of the rainfall anomaly between the Huang-Huai region in April–May and northeastern China in JJA as well as the influence from SSTA in the tropical Indian Ocean. It is shown that eliminating the internal dynamical processes by using the ensemble mean intensifies the connection, implying that the connection of rainfall variation in the two different seasons/regions may be partially caused by the external forcing (e.g., SSTA in the tropical Indian Ocean).


Sign in / Sign up

Export Citation Format

Share Document