The Sensitivity of the Tropical-Mean Radiation Budget

2005 ◽  
Vol 18 (16) ◽  
pp. 3189-3203 ◽  
Author(s):  
Amy C. Clement ◽  
Brian Soden

Abstract A key disagreement exists between global climate model (GCM) simulations and satellite observations of the decadal variability in the tropical-mean radiation budget. Measurements from the Earth Radiation Budget Experiment (ERBE) over the period 1984–2001 indicate a trend of increasing longwave emission and decreasing shortwave reflection that no GCM can currently reproduce. Motivated by these results, a series of model sensitivity experiments is performed to investigate hypotheses that have been advanced to explain this discrepancy. Specifically, the extent to which a strengthening of the Hadley circulation or a change in convective precipitation efficiency can alter the tropical-mean radiation budget is assessed. Results from both model sensitivity experiments and an empirical analysis of ERBE observations suggest that the tropical-mean radiation budget is remarkably insensitive to changes in the tropical circulation. The empirical estimate suggests that it would require at least a doubling in strength of the Hadley circulation in order to generate the observed decadal radiative flux changes. In contrast, rather small changes in a model’s convective precipitation efficiency can generate changes comparable to those observed, provided that the precipitation efficiency lies near the upper end of its possible range. If, however, the precipitation efficiency of tropical convective systems is more moderate, the model experiments suggest that the climate would be rather insensitive to changes in its value. Further observations are necessary to constrain the potential effects of microphysics on the top-of-atmosphere radiation budget.

2014 ◽  
Vol 27 (5) ◽  
pp. 1845-1862 ◽  
Author(s):  
Ming Zhao

Abstract This study explores connections between process-level modeling of convection and global climate model (GCM) simulated clouds and cloud feedback to global warming through a set of perturbed-physics and perturbed sea surface temperature experiments. A bulk diagnostic approach is constructed, and a set of variables is derived and demonstrated to be useful in understanding the simulated relationship. In particular, a novel bulk quantity, the convective precipitation efficiency or equivalently the convective detrainment efficiency, is proposed as a simple measure of the aggregated properties of parameterized convection important to the GCM simulated clouds. As the convective precipitation efficiency increases in the perturbed-physics experiments, both liquid and ice water path decrease, with low and middle cloud fractions diminishing at a faster rate than high cloud fractions. This asymmetry results in a large sensitivity of top-of-atmosphere net cloud radiative forcing to changes in convective precipitation efficiency in this limited set of models. For global warming experiments, intermodel variations in the response of cloud condensate, low cloud fraction, and total cloud radiative forcing are well explained by model variations in response to total precipitation (or detrainment) efficiency. Despite significant variability, all of the perturbed-physics models produce a sizable increase in precipitation efficiency to warming. A substantial fraction of the increase is due to its convective component, which depends on the parameterization of cumulus mixing and convective microphysical processes. The increase in convective precipitation efficiency and associated change in convective cloud height distribution owing to warming explains the increased cloud feedback and climate sensitivity in recently developed Geophysical Fluid Dynamics Laboratory GCMs. The results imply that a cumulus scheme using fractional removal of condensate for precipitation and inverse calculation of the entrainment rate tends to produce a lower climate sensitivity than a scheme using threshold removal for precipitation and the entrainment rate formulated inversely dependent on convective depth.


2017 ◽  
Vol 145 (4) ◽  
pp. 1495-1509 ◽  
Author(s):  
J.-P. Duvel ◽  
S. J. Camargo ◽  
A. H. Sobel

Abstract The authors analyze how modifications of the convective scheme modify the initiation of tropical depression vortices (TDVs) and their intensification into stronger warm-cored tropical cyclone–like vortices (TCs) in global climate model (GCM) simulations. The model’s original convection scheme has entrainment and cloud-base mass flux closures based on moisture convergence. Two modifications are considered: one in which entrainment is dependent on relative humidity and another in which the closure is based on the convective available potential energy (CAPE). Compared to reanalysis, TDVs are more numerous and intense in all three simulations, probably as a result of excessive parameterized deep convection at the expense of convection detraining at midlevel. The relative humidity–dependent entrainment rate increases both TDV initiation and intensification relative to the control. This is because this entrainment rate is reduced in the moist center of the TDVs, giving more intense convective precipitation, and also because it generates a moister environment that may favor the development of early stage TDVs. The CAPE closure inhibits the parameterized convection in strong TDVs, thus limiting their development despite a slight increase in the resolved convection. However, the maximum intensity reached by TC-like TDVs is similar in the three simulations, showing the statistical character of these tendencies. The simulated TCs develop from TDVs with different dynamical origins than those observed. For instance, too many TDVs and TCs initiate near or over southern West Africa in the GCM, collocated with the maximum in easterly wave activity, whose characteristics are also dependent on the convection scheme considered.


2016 ◽  
Vol 29 (2) ◽  
pp. 543-560 ◽  
Author(s):  
Ming Zhao ◽  
J.-C. Golaz ◽  
I. M. Held ◽  
V. Ramaswamy ◽  
S.-J. Lin ◽  
...  

Abstract Uncertainty in equilibrium climate sensitivity impedes accurate climate projections. While the intermodel spread is known to arise primarily from differences in cloud feedback, the exact processes responsible for the spread remain unclear. To help identify some key sources of uncertainty, the authors use a developmental version of the next-generation Geophysical Fluid Dynamics Laboratory global climate model (GCM) to construct a tightly controlled set of GCMs where only the formulation of convective precipitation is changed. The different models provide simulation of present-day climatology of comparable quality compared to the model ensemble from phase 5 of CMIP (CMIP5). The authors demonstrate that model estimates of climate sensitivity can be strongly affected by the manner through which cumulus cloud condensate is converted into precipitation in a model’s convection parameterization, processes that are only crudely accounted for in GCMs. In particular, two commonly used methods for converting cumulus condensate into precipitation can lead to drastically different climate sensitivity, as estimated here with an atmosphere–land model by increasing sea surface temperatures uniformly and examining the response in the top-of-atmosphere energy balance. The effect can be quantified through a bulk convective detrainment efficiency, which measures the ability of cumulus convection to generate condensate per unit precipitation. The model differences, dominated by shortwave feedbacks, come from broad regimes ranging from large-scale ascent to subsidence regions. Given current uncertainties in representing convective precipitation microphysics and the current inability to find a clear observational constraint that favors one version of the authors’ model over the others, the implications of this ability to engineer climate sensitivity need to be considered when estimating the uncertainty in climate projections.


2020 ◽  
Vol 59 (6) ◽  
pp. 1139-1152 ◽  
Author(s):  
Peter A. Bieniek ◽  
Uma S. Bhatt ◽  
Alison York ◽  
John E. Walsh ◽  
Rick Lader ◽  
...  

AbstractLightning is a key driver of wildfire activity in Alaska. Quantifying its historical variability and trends has been challenging because of changes in the observational network, but understanding historical and possible future changes in lightning activity is important for fire management planning. Dynamically downscaled reanalysis and global climate model (GCM) data were used to statistically assess lightning data in geographic zones used operationally by fire managers across Alaska. Convective precipitation was found to be a key predictor of weekly lightning activity through multiple regression analysis, along with additional atmospheric stability, moisture, and temperature predictor variables. Model-derived estimates of historical June–July lightning since 1979 showed increasing but lower-magnitude trends than the observed record, derived from the highly heterogeneous lightning sensor network, over the same period throughout interior Alaska. Two downscaled GCM projections estimate a doubling of lightning activity over the same June–July season and geographic region by the end of the twenty-first century. Such a substantial increase in lightning activity may have significant impacts on future wildfire activity in Alaska because of increased opportunities for ignitions, although the final outcome also depends on fire weather conditions and fuels.


2021 ◽  
Vol 2 (1) ◽  
pp. 205-231
Author(s):  
Oscar Dimdore-Miles ◽  
Lesley Gray ◽  
Scott Osprey

Abstract. Sudden stratospheric warmings (SSWs) are major disruptions of the Northern Hemisphere (NH) stratospheric polar vortex and occur on average approximately six times per decade in observation-based records. However, within these records, intervals of significantly higher and lower SSW rates are observed, suggesting the possibility of low-frequency variations in event occurrence. A better understanding of factors that influence this decadal variability may help to improve predictability of NH midlatitude surface climate, through stratosphere–troposphere coupling. In this work, multi-decadal variability of SSW events is examined in a 1000-year pre-industrial simulation of a coupled global climate model. Using a wavelet spectral decomposition method, we show that hiatus events (intervals of a decade or more with no SSWs) and consecutive SSW events (extended intervals with at least one SSW in each year) vary on multi-decadal timescales of periods between 60 and 90 years. Signals on these timescales are present for approximately 450 years of the simulation. We investigate the possible source of these long-term signals and find that the direct impact of variability in tropical sea surface temperatures, as well as the associated Aleutian Low, can account for only a small portion of the SSW variability. Instead, the major influence on long-term SSW variability is associated with long-term variability in amplitude of the stratospheric quasi-biennial oscillation (QBO). The QBO influence is consistent with the well-known Holton–Tan relationship, with SSW hiatus intervals associated with extended periods of particularly strong, deep QBO westerly phases. The results support recent studies that have highlighted the role of vertical coherence in the QBO when considering coupling between the QBO, the polar vortex and tropospheric circulation.


2011 ◽  
Vol 11 (3) ◽  
pp. 9375-9405
Author(s):  
A. Bichet ◽  
M. Wild ◽  
D. Folini ◽  
C. Schär

Abstract. Predicting and adapting to changes in the hydrological cycle is one of the major challenges for the twenty-first century. To better estimate how it will respond to future changes in climate forcings, it is crucial to understand how it has evolved in the past and why. In our study, we use an atmospheric global climate model with prescribed sea surface temperatures (SSTs) to investigate how changing external climate forcings have affected global land temperature and precipitation in the period 1870–2005. We show that prescribed SSTs (encapsulating other forcings) are the dominant forcing driving the decadal variability of land temperature and precipitation since 1870. On top of this SSTs forcing, we also find that the atmosphere-only response to increasing aerosol emissions is a reduction in global land temperature and precipitation by up to 0.4 °C and 30 mm year−1, respectively, between about 1930 and 2000. Similarly, the atmosphere-only response to increasing greenhouse gas concentrations is an increase in global land temperature and precipitation by up to 0.25 °C and 10 mm year−1, respectively, between about 1950 and 2000. Finally, our results also suggest that between about 1950 and 1970, increasing aerosol emissions had a larger impact on the hydrological cycle than increasing greenhouse gases concentrations.


1998 ◽  
Vol 27 ◽  
pp. 617-622 ◽  
Author(s):  
Ian Simmonds ◽  
David A. Jones ◽  
David J. Walland

The characteristics of, and the mechanisms causing, multi-decadal variability are currently receiving much attention. This undertaking is particularly challenging in the sub-Antarctic region because of the paucity of data, and the complexity of the governing physical processes. In this paper we report on aspects of high-southern-latitude variability which appear in the European Centre for Medium-range Weather Forecasts twice-daily analyses for the period 1 January 1980 to 31 August 1996 and in the results of global climate model experiments. We show that the number of cyclone positions in the 50-70°S latitude band exhibits considerable interannual variability, as well as changes on longer time-scales. The seasonal distribution of cyclones is linked with the “semi-annual oscillation". We show that the variability of this phenomenon in a 1000 year run of the GFDL coupled model shows “red” characteristics fand on decadal time-scales is similar to that displayed in the available observationsi. The interaction with the ocean and sea ice is siressed as an important factor in determining the nature of climate variability in sub-Antarctic latitudes.


1996 ◽  
Author(s):  
Larry Bergman ◽  
J. Gary ◽  
Burt Edelson ◽  
Neil Helm ◽  
Judith Cohen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document