scholarly journals Mechanisms of Remote Tropical Surface Warming during El Niño

2005 ◽  
Vol 18 (20) ◽  
pp. 4130-4149 ◽  
Author(s):  
John C. H. Chiang ◽  
Benjamin R. Lintner

Abstract The authors demonstrate through atmospheric general circulation model (the Community Climate Model version 3.10) simulations of the 1997/98 El Niño that the observed “remote” (i.e., outside the Pacific) tropical land and ocean surface warming appearing a few months after the peak of the El Niño event is causally linked to the Tropics-wide warming of the troposphere resulting from increased atmospheric heating in the Pacific, with the latter acting as a conduit for the former. Unlike surface temperature, the surface flux behavior in the remote Tropics in response to El Niño is complex, with sizable spatial variation and compensation between individual flux components; this complexity suggests a more fundamental control (i.e., tropospheric temperature) for the remote tropical surface warming. Over the remote oceans, latent heat flux acting through boundary layer humidity variations is the important regulator linking the surface warming in the model simulations to the tropospheric warming over the remote tropical oceans. Idealized 1997/98 El Niño simulations using an intermediate tropical circulation model (the Quasi-Equilibrium Tropical Circulation Model) in which individual surface fluxes are directly manipulated confirms this result. The findings over the remote ocean are consistent with the “tropospheric temperature mechanism” previously proposed for the tropical ENSO teleconnection, with equatorial planetary waves propagating tropospheric temperature anomalies from the eastern Pacific to the remote Tropics and moist convective processes mediating the troposphere-to-remote-surface connection. The latter effectively requires the boundary layer moist static energy to vary in concert with the free tropospheric moist static energy. Over the remote land regions, idealized model simulations suggest that sensible heat flux regulates the warming response to El Niño, though the underlying mechanism has not yet been fully determined.

Ocean Science ◽  
2016 ◽  
Vol 12 (6) ◽  
pp. 1165-1177 ◽  
Author(s):  
Christopher G. Piecuch ◽  
Katherine J. Quinn

Abstract. Previous studies show that nonseasonal variations in global-mean sea level (GMSL) are significantly correlated with El Niño–Southern Oscillation (ENSO). However, it has remained unclear to what extent these ENSO-related GMSL fluctuations correspond to steric (i.e., density) or barystatic (mass) effects. Here we diagnose the GMSL budget for ENSO events observationally using data from profiling floats, satellite gravimetry, and radar altimetry during 2005–2015. Steric and barystatic effects make comparable contributions to the GMSL budget during ENSO, in contrast to previous interpretations based largely on hydrological models, which emphasize the barystatic component. The steric contributions reflect changes in global ocean heat content, centered on the Pacific. Distributions of ocean heat storage in the Pacific arise from a mix of diabatic and adiabatic effects. Results have implications for understanding the surface warming slowdown and demonstrate the usefulness of the Global Ocean Observing System for constraining Earth's hydrological cycle and radiation imbalance.


2018 ◽  
Vol 33 (1) ◽  
pp. 41-56 ◽  
Author(s):  
Aline Corrêa de Sousa ◽  
Luiz Antonio Candido ◽  
Rita Valéria Andreoli

Resumo O objetivo deste trabalho foi avaliar a resposta atmosférica aos padrões de variabilidade interanual da Temperatura da Superfície do Mar nas áreas dos oceanos Atlântico e Pacífico Tropicais, analisando o ciclo sazonal da Divergência de Fluxo de Umidade, sobre as regiões do Atlântico Tropical Norte e Sul e Amazônia. Os dados de Reanálise foram utilizados no estudo observacional e para o estudo numérico foi utilizado o Quasi-equilibrium Tropical Circulation Model - QTCM. Os resultados mostram que o QTCM tem habilidade na representação da distribuição espacial dos máximos de precipitação sobre o continente e suas variações sazonais. O QTCM reproduz os padrões climatológicos da precipitação e de Divergência de Fluxo de Umidade associados à ocorrência de eventos El Niño Oscilação Sul e Modo Meridional do Atlântico, sugerindo também que o comportamento médio sazonal da Divergência de Fluxo de Umidade, na área Norte do Atlântico, tem maior impacto na ocorrência de El Niño, induzindo a redução da precipitação na Amazônia. A área Norte do Atlântico além de fonte de umidade é também um importante regulador da Divergência de Fluxo de Umidade, cujas anomalias de temperatura nessa região proporcionam impactos sobre a parte Norte da América do Sul e Amazônia.


2005 ◽  
Vol 18 (24) ◽  
pp. 5312-5329 ◽  
Author(s):  
Benjamin R. Lintner ◽  
John C. H. Chiang

Abstract The applicability of a weak temperature gradient (WTG) formulation for the reorganization of tropical climate during El Niño–Southern Oscillation (ENSO) events is investigated. This idealized dynamical framework solves for the divergent portion of the tropical circulation by assuming a spatially homogeneous perturbation temperature profile and a mass balance constraint applied over the tropical belt. An intermediate-level complexity model [the Quasi-Equilibrium Tropical Circulation Model (QTCM)] configured with the WTG assumptions is used to simulate El Niño conditions and is found to yield an appropriate level of tropospheric warming, a plausible pattern of precipitation anomalies in the tropical Pacific source region of El Niño, and a gross precipitation deficit over the Tropics outside the Pacific (hereafter the “remote Tropics”). Additional tests of the WTG framework with La Niña forcing conditions and enhanced greenhouse gas concentrations support its applicability. However, the ENSO response under the WTG framework fails in some respects when compared to the standard QTCM: in particular, some regional features of the anomalous precipitation response, especially in the remote Tropics, differ markedly between the two model versions. These discrepancies appear to originate in part from the lack of anomalous tropospheric temperature gradients (and circulations) in the framework presented here. Nevertheless, the WTG approach appears to be a useful lowest-order model for the tropical climate adjustment to ENSO. The WTG framework is also used to argue that El Niño may not represent a good proxy for tropical rainfall changes under greenhouse gas warming scenarios because the large-scale subsidence occurring with the tropospheric warming in the El Niño scenario has an effect on rainfall that is distinct from the effect of increased tropospheric temperatures common to both the greenhouse gas warming and El Niño scenarios.


2011 ◽  
Vol 24 (19) ◽  
pp. 5125-5133 ◽  
Author(s):  
Yi Ming ◽  
V. Ramaswamy

This study investigates how anthropogenic aerosols, alone or in conjunction with radiatively active gases, affect the tropical circulation with an atmosphere/mixed layer–ocean general circulation model. Aerosol-induced cooling gives rise to a substantial increase in the overall strength of the tropical circulation, a robust outcome consistent with a thermodynamical scaling argument. Owing to the interhemispheric asymmetry in aerosol forcing, the zonal-mean (Hadley) and zonally asymmetrical components of the tropical circulation respond differently. The Hadley circulation weakens in the Northern Hemisphere but strengthens in the Southern Hemisphere. The resulting northward cross-equatorial moist static energy flux compensates partly for the aerosol radiative cooling in the Northern Hemisphere. In contrast, the less restricted zonally asymmetrical circulation does not show sensitivity to the spatial structure of aerosols and strengthens in both hemispheres. The results also point to the possible role of aerosols in driving the observed reduction in the equatorial sea level pressure gradient. These circulation changes have profound implications for the hydrological cycle. Aerosols alone make the subtropical dry zones in both hemispheres wetter, as the local hydrological response is controlled thermodynamically by atmospheric moisture content. The deep tropical rainfall undergoes a dynamically induced southward shift, a robust pattern consistent with the adjustments in the zonal-mean circulation and in the meridional moist static energy transport. Less certain is the magnitude of the shift. The nonlinearity exhibited by the combined hydrological response to aerosols and radiatively active gases is dynamical in nature.


2016 ◽  
Author(s):  
Christopher G. Piecuch ◽  
Katherine J. Quinn

Abstract. Previous studies show that nonseasonal variations in global-mean sea level (GMSL) are significantly correlated with El Niño-Southern Oscillation (ENSO). However, it has remained unclear to what extent these ENSO-related GMSL fluctuations correspond to steric (i.e., density) or barystatic (mass) effects. Here we diagnose the GMSL budget for ENSO events observationally using data from profiling floats, satellite gravimetry, and radar altimetry during 2005–2015. Steric and barystatic effects make comparable contributions to the GMSL budget during ENSO, in contrast to previous interpretations based largely on hydrological models, which emphasize the barystatic component. The steric contributions reflect changes in global ocean heat content, centered on the Pacific. Distributions of ocean heat storage in the Pacific arise from a mix of diabatic and adiabatic effects. Results have implications for understanding the surface warming slowdown and demonstrate the usefulness of the Global Ocean Observing System for constraining Earth's hydrological cycle and radiation imbalance.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 147
Author(s):  
Benjamin R. Jordan

Kukuiho’olua Island is an islet that lies 164 m due north of Laie Point, a peninsula of cemented, coastal, Pleistocene and Holocene sand dunes. Kukuiho’olua Island consists of the same dune deposits as Laie Point and is cut by a sea arch, which, documented here for first time, may have formed during the 1 April 1946 “April Fools’s Day Tsunami.” The tsunami-source of formation is supported by previous modeling by other authors, which indicated that the geometry of overhanging sea cliffs can greatly strengthen and focus the force of tsunami waves. Additional changes occurred to the island and arch during the 2015–2016 El Niño event, which was one of the strongest on record. During the event, anomalous wave heights and reversed wind directions occurred across the Pacific. On the night of 24–25 February 2016, large storm waves, resulting from the unique El Niño conditions washed out a large boulder that had lain within the arch since its initial formation, significantly increasing the open area beneath the arch. Large waves also rose high enough for seawater to flow over the peninsula at Laie Point, causing significant erosion of its upper surface. These changes at Laie Point and Kukuio’olua Island serve as examples of long-term, intermittent change to a coastline—changes that, although infrequent, can occur quickly and dramatically, potentially making them geologic hazards.


2013 ◽  
Vol 26 (13) ◽  
pp. 4710-4724 ◽  
Author(s):  
Michael Mayer ◽  
Kevin E. Trenberth ◽  
Leopold Haimberger ◽  
John T. Fasullo

Abstract The variability of zonally resolved tropical energy budgets in association with El Niño–Southern Oscillation (ENSO) is investigated. The most recent global atmospheric reanalyses from 1979 to 2011 are employed with removal of apparent discontinuities to obtain best possible temporal homogeneity. The growing length of record allows a more robust analysis of characteristic patterns of variability with cross-correlation, composite, and EOF methods. A quadrupole anomaly pattern is found in the vertically integrated energy divergence associated with ENSO, with centers over the Indian Ocean, the Indo-Pacific warm pool, the eastern equatorial Pacific, and the Atlantic. The smooth transition, particularly of the main maxima of latent and dry static energy divergence, from the western to the eastern Pacific is found to require at least two EOFs to be adequately described. The canonical El Niño pattern (EOF-1) and a transition pattern (EOF-2; referred to as El Niño Modoki by some authors) form remarkably coherent ENSO-related anomaly structures of the tropical energy budget not only over the Pacific but throughout the tropics. As latent and dry static energy divergences show strong mutual cancellation, variability of total energy divergence is smaller and more tightly coupled to local sea surface temperature (SST) anomalies and is mainly related to the ocean heat discharge and recharge during ENSO peak phases. The complexity of the structures throughout the tropics and their evolution during ENSO events along with their interactions with the annual cycle have often not been adequately accounted for; in particular, the El Niño Modoki mode is but part of the overall evolutionary patterns.


2015 ◽  
Vol 28 (9) ◽  
pp. 3846-3856 ◽  
Author(s):  
Hye-Mi Kim ◽  
Michael A. Alexander

Abstract The vertically integrated water vapor transport (IVT) over the Pacific–North American sector during three phases of ENSO in boreal winter (December–February) is investigated using IVT values calculated from the Climate Forecast System Reanalysis (CFSR) during 1979–2010. The shift of the location and sign of sea surface temperature (SST) anomalies in the tropical Pacific Ocean leads to different atmospheric responses and thereby changes the seasonal mean moisture transport into North America. During eastern Pacific El Niño (EPEN) events, large positive IVT anomalies extend northeastward from the subtropical Pacific into the northwestern United States following the anomalous cyclonic flow around a deeper Aleutian low, while a southward shift of the cyclonic circulation during central Pacific El Niño (CPEN) events induces the transport of moisture into the southwestern United States. In addition, moisture from the eastern tropical Pacific is transported from the deep tropical eastern Pacific into Mexico and the southwestern United States during CPEN. During La Niña (NINA), the seasonal mean IVT anomaly is opposite to that of two El Niño phases. Analyses of 6-hourly IVT anomalies indicate that there is strong moisture transport from the North Pacific into the northwestern and southwestern United States during EPEN and CPEN, respectively. The IVT is maximized on the southeastern side of a low located over the eastern North Pacific, where the low is weaker but located farther south and closer to shore during CPEN than during EPEN. Moisture enters the southwestern United States from the eastern tropical Pacific during NINA via anticyclonic circulation associated with a ridge over the southern United States.


2012 ◽  
Vol 25 (9) ◽  
pp. 3321-3335 ◽  
Author(s):  
Masamichi Ohba ◽  
Masahiro Watanabe

Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their transition/duration such that El Niño tends to shift rapidly to La Niña after the mature phase, whereas La Niña tends to persist for up to 2 yr. The possible role of sea surface temperature (SST) anomalies in the Indian Ocean (IO) in this ENSO asymmetry is investigated using a coupled general circulation model (CGCM). Decoupled-IO experiments are conducted to assess asymmetric IO feedbacks to the ongoing ENSO evolution in the Pacific. Identical-twin forecast experiments show that a coupling of the IO extends the skillful prediction of the ENSO warm phase by about one year, which was about 8 months in the absence of the IO coupling, in which a significant drop of the prediction skill around the boreal spring (known as the spring prediction barrier) is found. The effect of IO coupling on the predictability of the Pacific SST is significantly weaker in the decay phase of La Niña. Warm IO SST anomalies associated with El Niño enhance surface easterlies over the equatorial western Pacific and hence facilitate the El Niño decay. However, this mechanism cannot be applied to cold IO SST anomalies during La Niña. The result of these CGCM experiments estimates that approximately one-half of the ENSO asymmetry arises from the phase-dependent nature of the Indo-Pacific interbasin coupling.


Sign in / Sign up

Export Citation Format

Share Document