scholarly journals The Seasonal Variability of the Arctic Ocean Ekman Transport and Its Role in the Mixed Layer Heat and Salt Fluxes

2006 ◽  
Vol 19 (20) ◽  
pp. 5366-5387 ◽  
Author(s):  
Jiayan Yang

Abstract The oceanic Ekman transport and pumping are among the most important parameters in studying the ocean general circulation and its variability. Upwelling due to the Ekman transport divergence has been identified as a leading mechanism for the seasonal to interannual variability of the upper-ocean heat content in many parts of the World Ocean, especially along coasts and the equator. Meanwhile, the Ekman pumping is the primary mechanism that drives basin-scale circulations in subtropical and subpolar oceans. In those ice-free oceans, the Ekman transport and pumping rate are calculated using the surface wind stress. In the ice-covered Arctic Ocean, the surface momentum flux comes from both air–water and ice–water stresses. The data required to compute these stresses are now available from satellite and buoy observations. But no basin-scale calculation of the Ekman transport in the Arctic Ocean has been done to date. In this study, a suite of satellite and buoy observations of ice motion, ice concentration, surface wind, etc., will be used to calculate the daily Ekman transport over the whole Arctic Ocean from 1978 to 2003 on a 25-km resolution. The seasonal variability and its relationship to the surface forcing fields will be examined. Meanwhile, the contribution of the Ekman transport to the seasonal fluxes of heat and salt to the Arctic Ocean mixed layer will be discussed. It was found that the greatest seasonal variations of Ekman transports of heat and salt occur in the southern Beaufort Sea in the fall and early winter when a strong anticyclonic wind and ice motion are present. The Ekman pumping velocity in the interior Beaufort Sea reaches as high as 10 cm day−1 in November while coastal upwelling is even stronger. The contributions of the Ekman transport to the heat and salt flux in the mixed layer are also considerable in the region.

2012 ◽  
Vol 25 (4) ◽  
pp. 1079-1095 ◽  
Author(s):  
Z. Long ◽  
W. Perrie ◽  
C. L. Tang ◽  
E. Dunlap ◽  
J. Wang

Abstract The authors investigate the interannual variations of freshwater content (FWC) and sea surface height (SSH) in the Beaufort Sea, particularly their increases during 2004–09, using a coupled ice–ocean model (CIOM), adapted for the Arctic Ocean to simulate the interannual variations. The CIOM simulation exhibits a (relative) salinity minimum in the Beaufort Sea and a warm Atlantic water layer in the Arctic Ocean, which is similar to the Polar Hydrographic Climatology (PHC), and captures the observed FWC maximum in the central Beaufort Sea, and the observed variation and rapid decline of total ice concentration, over the last 30 years. The model simulations of SSH and FWC suggest a significant increase in the central Beaufort Sea during 2004–09. The simulated SSH increase is about 8 cm, while the FWC increase is about 2.5 m, with most of these increases occurring in the center of the Beaufort gyre. The authors show that these increases are due to an increased surface wind stress curl during 2004–09, which increased the FWC in the Beaufort Sea by about 0.63 m yr−1 through Ekman pumping. Moreover, the increased surface wind is related to the interannual variation of the Arctic polar vortex at 500 hPa. During 2004–09, the polar vortex had significant weakness, which enhanced the Beaufort Sea high by affecting the frequency of synoptic weather systems in the region. In addition to the impacts of the polar vortex, enhanced melting of sea ice also contributes to the FWC increase by about 0.3 m yr−1 during 2004–09.


2014 ◽  
Vol 27 (4) ◽  
pp. 1445-1468 ◽  
Author(s):  
Cecilia Peralta-Ferriz ◽  
James H. Morison ◽  
John M. Wallace ◽  
Jennifer A. Bonin ◽  
Jinlun Zhang

Abstract Measurements of ocean bottom pressure (OBP) anomalies from the satellite mission Gravity Recovery and Climate Experiment (GRACE), complemented by information from two ocean models, are used to investigate the variations and distribution of the Arctic Ocean mass from 2002 through 2011. The forcing and dynamics associated with the observed OBP changes are explored. Major findings are the identification of three primary temporal–spatial modes of OBP variability at monthly-to-interannual time scales with the following characteristics. Mode 1 (50% of the variance) is a wintertime basin-coherent Arctic mass change forced by southerly winds through Fram Strait, and to a lesser extent through Bering Strait. These winds generate northward geostrophic current anomalies that increase the mass in the Arctic Ocean. Mode 2 (20%) reveals a mass change along the Siberian shelves, driven by surface Ekman transport and associated with the Arctic Oscillation. Mode 3 (10%) reveals a mass dipole, with mass decreasing in the Chukchi, East Siberian, and Laptev Seas, and mass increasing in the Barents and Kara Seas. During the summer, the mass decrease on the East Siberian shelves is due to the basin-scale anticyclonic atmospheric circulation that removes mass from the shelves via Ekman transport. During the winter, the forcing mechanisms include a large-scale cyclonic atmospheric circulation in the eastern-central Arctic that produces mass divergence into the Canada Basin and the Barents Sea. In addition, strengthening of the Beaufort high tends to remove mass from the East Siberian and Chukchi Seas. Supporting previous modeling results, the month-to-month variability in OBP associated with each mode is predominantly of barotropic character.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Roxanne Ahmed ◽  
Terry Prowse ◽  
Yonas Dibike ◽  
Barrie Bonsal

Spring freshet is the dominant annual discharge event in all major Arctic draining rivers with large contributions to freshwater inflow to the Arctic Ocean. Research has shown that the total freshwater influx to the Arctic Ocean has been increasing, while at the same time, the rate of change in the Arctic climate is significantly higher than in other parts of the globe. This study assesses the large-scale atmospheric and surface climatic conditions affecting the magnitude, timing and regional variability of the spring freshets by analyzing historic daily discharges from sub-basins within the four largest Arctic-draining watersheds (Mackenzie, Ob, Lena and Yenisei). Results reveal that climatic variations closely match the observed regional trends of increasing cold-season flows and earlier freshets. Flow regulation appears to suppress the effects of climatic drivers on freshet volume but does not have a significant impact on peak freshet magnitude or timing measures. Spring freshet characteristics are also influenced by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation and the North Atlantic Oscillation, particularly in their positive phases. The majority of significant relationships are found in unregulated stations. This study provides a key insight into the climatic drivers of observed trends in freshet characteristics, whilst clarifying the effects of regulation versus climate at the sub-basin scale.


2021 ◽  
Author(s):  
David Gareth Babb ◽  
Ryan J. Galley ◽  
Stephen E. L. Howell ◽  
Jack Christopher Landy ◽  
Julienne Christine Stroeve ◽  
...  

2015 ◽  
Vol 12 (11) ◽  
pp. 3551-3565 ◽  
Author(s):  
D. Doxaran ◽  
E. Devred ◽  
M. Babin

Abstract. Global warming has a significant impact on the regional scale on the Arctic Ocean and surrounding coastal zones (i.e., Alaska, Canada, Greenland, Norway and Russia). The recent increase in air temperature has resulted in increased precipitation along the drainage basins of Arctic rivers. It has also directly impacted land and seawater temperatures with the consequence of melting permafrost and sea ice. An increase in freshwater discharge by main Arctic rivers has been clearly identified in time series of field observations. The freshwater discharge of the Mackenzie River has increased by 25% since 2003. This may have increased the mobilization and transport of various dissolved and particulate substances, including organic carbon, as well as their export to the ocean. The release from land to the ocean of such organic material, which has been sequestered in a frozen state since the Last Glacial Maximum, may significantly impact the Arctic Ocean carbon cycle as well as marine ecosystems. In this study we use 11 years of ocean color satellite data and field observations collected in 2009 to estimate the mass of terrestrial suspended solids and particulate organic carbon delivered by the Mackenzie River into the Beaufort Sea (Arctic Ocean). Our results show that during the summer period, the concentration of suspended solids at the river mouth, in the delta zone and in the river plume has increased by 46, 71 and 33%, respectively, since 2003. Combined with the variations observed in the freshwater discharge, this corresponds to a more than 50% increase in the particulate (terrestrial suspended particles and organic carbon) export from the Mackenzie River into the Beaufort Sea.


2019 ◽  
Vol 7 (10) ◽  
pp. 385
Author(s):  
Yunyun Fu ◽  
Richard B. Rivkin ◽  
Andrew S. Lang

The Arctic Ocean is one of the least well-studied marine microbial ecosystems. Its low-temperature and low-salinity conditions are expected to result in distinct bacterial communities, in comparison to lower latitude oceans. However, this is an ocean currently in flux, with climate change exerting pronounced effects on sea-ice coverage and freshwater inputs. How such changes will affect this ecosystem are poorly constrained. In this study, we characterized the bacterial community compositions at different depths in both coastal, freshwater-influenced, and pelagic, sea-ice-covered locations in the Beaufort Sea in the western Canadian Arctic Ocean. The environmental factors controlling the bacterial community composition and diversity were investigated. Alphaproteobacteria dominated the bacterial communities in samples from all depths and stations. The Pelagibacterales and Rhodobacterales groups were the predominant taxonomic representatives within the Alphaproteobacteria. Bacterial communities in coastal and offshore samples differed significantly, and vertical water mass segregation was the controlling factor of community composition among the offshore samples, regardless of the taxonomic level considered. These data provide an important baseline view of the bacterial community in this ocean system that will be of value for future studies investigating possible changes in the Arctic Ocean in response to global change and/or anthropogenic disturbance.


2008 ◽  
Vol 38 (1) ◽  
pp. 146-163 ◽  
Author(s):  
Yoshimasa Matsumura ◽  
Hiroyasu Hasumi

Abstract Eddy generation induced by a line-shaped salt flux under a sea ice lead and associated salt transport are investigated using a three-dimensional numerical model. The model is designed to represent a typical condition for the wintertime Arctic Ocean mixed layer, where new ice formation within leads is known to be one of the primary sources of dense water. The result shows that along-lead baroclinic jets generate anticyclonic eddies at the base of the mixed layer, and almost all the lead-originated salt is contained inside these eddies. These eddies survive for over a month after closing of the lead and transport the lead-originated salt laterally. Consequently, the lead-origin salt settles only on the top of the halocline and is not used for increasing salinity of the mixed layer. Sensitivity experiments suggest that the horizontal scale of generated eddies depends only on the surface forcing and is proportional to the cube root of the total amount of salt input. This scaling of eddy size is consistent with a theoretical argument based on a linear instability theory. Parameterizing these processes would improve representation of the Arctic Ocean mixed layer in ocean general circulation models.


2010 ◽  
Vol 46 (5) ◽  
pp. 652-662 ◽  
Author(s):  
B. A. Kagan ◽  
A. A. Timofeev ◽  
E. V. Sofina

2012 ◽  
Vol 9 (4) ◽  
pp. 2621-2677 ◽  
Author(s):  
M. Korhonen ◽  
B. Rudels ◽  
M. Marnela ◽  
A. Wisotzki ◽  
J. Zhao

Abstract. The Arctic Ocean gains freshwater mainly through river discharge, precipitation and the inflowing low salinity waters from the Pacific Ocean. In addition the recent reduction in sea ice volume is likely to influence the surface salinity and thus contribute to the freshwater content in the upper ocean. The present day freshwater storage in the Arctic Ocean appears to be sufficient to maintain the upper ocean stratification and to protect the sea ice from the deep ocean heat content. The recent freshening has not, despite the established strong stratification, been able to restrain the accelerating ice loss and other possible heat sources besides the Atlantic Water, such as the waters advecting from the Pacific Ocean and the solar insolation warming the Polar Mixed Layer, are investigated. Since the ongoing freshening, oceanic heat sources and the sea ice melt are closely related, this study, based on hydrographic observations, attempts to examine the ongoing variability in time and space in relation to these three properties. The largest time and space variability of freshwater content occurs in the Polar Mixed Layer and the upper halocline. The freshening of the upper ocean during the 2000s is ubiquitous in the Arctic Ocean although the most substantial increase occurs in the Canada Basin where the freshwater is accumulating in the thickening upper halocline. Whereas the salinity of the upper halocline is nearly constant, the freshwater content in the Polar Mixed Layer is increasing due to decreasing salinity. The decrease in salinity is likely to result from the recent changes in ice formation and melting. In contrast, in the Eurasian Basin where the seasonal ice melt has remained rather modest, the freshening of both the Polar Mixed Layer and the upper halocline is mainly of advective origin. While the warming of the Atlantic inflow was widespread in the Arctic Ocean during the 1990s, the warm and saline inflow events in the early 2000s appear to circulate mainly in the Nansen Basin. Nevertheless, even in the Nansen Basin the seasonal ice melt appears independent of the continuously increasing heat content in the Atlantic layer. As no other oceanic heat sources can be identified in the upper layers, it is likely that increased absorption of solar energy has been causing the ice melt prior to the observations.


Sign in / Sign up

Export Citation Format

Share Document