scholarly journals The Effect of Environmental Conditions on Tropical Deep Convective Systems Observed from the TRMM Satellite

2006 ◽  
Vol 19 (22) ◽  
pp. 5745-5761 ◽  
Author(s):  
Bing Lin ◽  
Bruce A. Wielicki ◽  
Patrick Minnis ◽  
Lin Chambers ◽  
Kuan-Man Xu ◽  
...  

Abstract This study uses measurements of radiation and cloud properties taken between January and August 1998 by three Tropical Rainfall Measuring Mission (TRMM) instruments, the Clouds and the Earth’s Radiant Energy System (CERES) scanner, the TRMM Microwave Imager (TMI), and the Visible and Infrared Scanner (VIRS), to evaluate the variations of tropical deep convective systems (DCSs) with sea surface temperature and precipitation. The authors find that DCS precipitation efficiency increases with SST at a rate of ∼2% K−1. Despite increasing rainfall efficiency, the cloud areal coverage rises with SST at a rate of about 7% K−1 in the warm tropical seas. There, the boundary layer moisture supply for deep convection and the moisture transported to the upper troposphere for cirrus anvil cloud formation increase by ∼6.3% and ∼4.0% K−1, respectively. The changes in cloud formation efficiency, along with the increased transport of moisture available for cloud formation, likely contribute to the large rate of increasing DCS areal coverage. Although no direct observations are available, the increase of cloud formation efficiency with rising SST is deduced indirectly from measurements of changes in the ratio of DCS ice water path and boundary layer water vapor amount with SST. Besides the cloud areal coverage, DCS cluster effective sizes also increase with precipitation. Furthermore, other cloud properties, such as cloud total water and ice water paths, increase with SST. These changes in DCS properties will produce a negative radiative feedback for the earth’s climate system due to strong reflection of shortwave radiation by the DCS. These results significantly differ from some previously hypothesized dehydration scenarios for warmer climates, partially support the thermostat hypothesis but indicate a smaller magnitude of the negative feedback, and have great potential in testing current cloud-system-resolving models and convective parameterizations of general circulation models.

2008 ◽  
Vol 21 (19) ◽  
pp. 4955-4973 ◽  
Author(s):  
Michael P. Jensen ◽  
Andrew M. Vogelmann ◽  
William D. Collins ◽  
Guang J. Zhang ◽  
Edward P. Luke

Abstract To aid in understanding the role that marine boundary layer (MBL) clouds play in climate and assist in improving their representations in general circulation models (GCMs), their long-term microphysical and macroscale characteristics are quantified using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the National Aeronautics and Space Administration’s (NASA’s) Terra satellite. Six years of MODIS pixel-level cloud products are used from oceanic study regions off the west coasts of California, Peru, the Canary Islands, Angola, and Australia where these cloud types are common. Characterizations are given for their organization (macroscale structure), the associated microphysical properties, and the seasonal dependencies of their variations for scales consistent with the size of a GCM grid box (300 km × 300 km). MBL mesoscale structure is quantified using effective cloud diameter CD, which is introduced here as a simplified measure of bulk cloud organization; it is straightforward to compute and provides descriptive information beyond that offered by cloud fraction. The interrelationships of these characteristics are explored while considering the influences of the MBL state, such as the occurrence of drizzle. Several commonalities emerge for the five study regions. MBL clouds contain the best natural examples of plane-parallel clouds, but overcast clouds occur in only about 25% of the scenes, which emphasizes the importance of representing broken MBL cloud fields in climate models (that are subgrid scale). During the peak months of cloud occurrence, mesoscale organization (larger CD) increases such that the fractions of scenes characterized as “overcast” and “clumped” increase at the expense of the “scattered” scenes. Cloud liquid water path and visible optical depth usually trend strongly with CD, with the largest values occurring for scenes that are drizzling. However, considerable interregional differences exist in these trends, suggesting that different regression functionalities exist for each region. For peak versus off-peak months, the fraction of drizzling scenes (as a function of CD) are similar for California and Angola, which suggests that a single probability distribution function might be used for their drizzle occurrence in climate models. The patterns are strikingly opposite for Peru and Australia; thus, the contrasts among regions may offer a test bed for model simulations of MBL drizzle occurrence.


2014 ◽  
Vol 27 (11) ◽  
pp. 4189-4208 ◽  
Author(s):  
Ryan E. Stanfield ◽  
Xiquan Dong ◽  
Baike Xi ◽  
Aaron Kennedy ◽  
Anthony D. Del Genio ◽  
...  

Abstract Although many improvements have been made in phase 5 of the Coupled Model Intercomparison Project (CMIP5), clouds remain a significant source of uncertainty in general circulation models (GCMs) because their structural and optical properties are strongly dependent upon interactions between aerosol/cloud microphysics and dynamics that are unresolved in such models. Recent changes to the planetary boundary layer (PBL) turbulence and moist convection parameterizations in the NASA GISS Model E2 atmospheric GCM (post-CMIP5, hereafter P5) have improved cloud simulations significantly compared to its CMIP5 (hereafter C5) predecessor. A study has been performed to evaluate these changes between the P5 and C5 versions of the GCM, both of which used prescribed sea surface temperatures. P5 and C5 simulated cloud fraction (CF), liquid water path (LWP), ice water path (IWP), cloud water path (CWP), precipitable water vapor (PWV), and relative humidity (RH) have been compared to multiple satellite observations including the Clouds and the Earth’s Radiant Energy System–Moderate Resolution Imaging Spectroradiometer (CERES-MODIS, hereafter CM), CloudSat–Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO; hereafter CC), Atmospheric Infrared Sounder (AIRS), and Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). Although some improvements are observed in the P5 simulation on a global scale, large improvements have been found over the southern midlatitudes (SMLs), where correlations increased and both bias and root-mean-square error (RMSE) significantly decreased, in relation to the previous C5 simulation, when compared to observations. Changes to the PBL scheme have resulted in improved total column CFs, particularly over the SMLs where marine boundary layer (MBL) CFs have increased by nearly 20% relative to the previous C5 simulation. Globally, the P5 simulated CWPs are 25 g m−2 lower than the previous C5 results. The P5 version of the GCM simulates PWV and RH higher than its C5 counterpart and agrees well with the AMSR-E and AIRS observations. The moister atmospheric conditions simulated by P5 are consistent with the CF comparison and provide a strong support for the increase in MBL clouds over the SMLs. Over the tropics, the P5 version of the GCM simulated total column CFs and CWPs are slightly lower than the previous C5 results, primarily as a result of the shallower tropical boundary layer in P5 relative to C5 in regions outside the marine stratocumulus decks.


2018 ◽  
Vol 123 (3) ◽  
pp. 1708-1723 ◽  
Author(s):  
Jingjing Tian ◽  
Xiquan Dong ◽  
Baike Xi ◽  
Patrick Minnis ◽  
William L. Smith ◽  
...  

2020 ◽  
Author(s):  
Matthias Tesche ◽  
Torsten Seelig ◽  
Fani Alexandri ◽  
Peter Bräuer ◽  
Goutam Choudhury ◽  
...  

<p>Atmospheric aerosol particles are of great importance for cloud formation in the atmosphere because they are needed to act as cloud condensation nuclei (CCN) in liquid-water clouds and as ice nucleating particles (INP) in ice-containing clouds. Changes in aerosol concentration affect the albedo, development, phase, lifetime and rain rate of clouds. These aerosol-cloud interactions (ACI) and the resulting climate effects still cause the largest uncertainty in assessing climate change as they are understood only with medium confidence.</p><p>The PACIFIC project, which is embedded in the French-German Make Our Planet Great Again (MOPGA) initiative, aims to improve our understanding of ACI by enhancing the representation of those aerosols that are relevant for cloud processes and by quantifying temporal changes in cloud properties throughout the cloud life cycle. PACIFIC uses a three-fold approach for studying ACI based on spaceborne observations by (i) using spaceborne lidar data to obtain unprecedented insight in CCN and INP concentrations at cloud level opposed to using column-integrated parameters, (ii) characterizing the development of clouds by tracking them in time-resolved geostationary observations opposed to resorting to the snap-shot view of polar-orbiting sensors, and (iii) combining the detailed observations from polar-orbiting sensors with the time-resolved observations of geostationary sensors – for clouds observed by both – to study the effects of CCN and INP on the albedo, liquid and ice water content, droplet and crystal size, development, phase and rain rate of clouds within different regimes carefully accounting for the meteorological background.</p><p>This contribution will present the scope of the MOPGA-GRI project PACIFIC and illustrate the first findings.</p>


2009 ◽  
Vol 22 (22) ◽  
pp. 5983-6000 ◽  
Author(s):  
Zachary A. Eitzen ◽  
Kuan-Man Xu ◽  
Takmeng Wong

Abstract The physical and radiative properties of tropical deep convective systems for the period from January to August 1998 are examined with the use of Clouds and the Earth’s Radiant Energy System Single-Scanner Footprint (SSF) data from the Tropical Rainfall Measuring Mission satellite. Deep convective (DC) cloud objects are contiguous regions of satellite footprints that fulfill the DC criteria (i.e., overcast footprints with cloud optical depths >10 and cloud-top heights >10 km). Extended cloud objects (ECOs) start with the original cloud object but include all other cloudy footprints within a rectangular box that completely covers the original cloud object. Most of the non-DC footprints are overcast but have optical depths and/or cloud-top heights that are too low to fit the DC criteria. The histograms of cloud physical and radiative properties are analyzed according to the size of the ECO and the SST of the underlying ocean. Larger ECOs are associated with greater magnitudes of large-scale upward motion, which supports stronger convection for larger sizes of ECOs. This leads to shifts toward higher values in the DC distributions of cloud-top height, albedo, condensate water path, and cloud optical depth. However, non-DC footprints become less reflective with increasing ECO size, as the longer-lived large convective systems have more time to develop thin cirrus anvils. The proportion of DC footprints remains fairly constant with size. The proportion of DC footprints also remains nearly constant with SST within a given size class, although the number of footprints per object increases with SST for large objects. As SSTs increase, there is a decrease in the proportion of updraft water that goes into detrainment, causing the non-DC distributions of albedo, condensate water path, and cloud optical depth to shift toward lower values. The all-cloud distributions of cloud-top temperature and outgoing longwave radiation (OLR) shift toward lower values as SST increases owing to the increase in convective instability with SST. Both the DC and non-DC distributions of cloud-top temperature do not change much with satellite precession cycle, supporting the fixed anvil temperature hypothesis of Hartmann and Larson. When a joint histogram is formed from the cloud-top pressures and cloud optical depths of the ECOs, it is very similar to the corresponding histogram of the deep convective weather state obtained by cluster analysis of International Satellite Cloud Climatology Project data.


2013 ◽  
Vol 26 (4) ◽  
pp. 1457-1466 ◽  
Author(s):  
William B. Rossow ◽  
Ademe Mekonnen ◽  
Cindy Pearl ◽  
Weber Goncalves

Abstract Classifying tropical deep convective systems by the mesoscale distribution of their cloud properties and sorting matching precipitation measurements over an 11-yr period reveals that the whole distribution of instantaneous precipitation intensity and daily average accumulation rate is composed of (at least) two separate distributions representing distinctly different types of deep convection associated with different meteorological conditions (the distributions of non-deep-convective situations are also shown for completeness). The two types of deep convection produce very different precipitation intensities and occur with very different frequencies of occurrence. Several previous studies have shown that the interaction of the large-scale tropical circulation with deep convection causes switching between these two types, leading to a substantial increase of precipitation. In particular, the extreme portion of the tropical precipitation intensity distribution, above 2 mm h−1, is produced by 40% of the larger, longer-lived mesoscale-organized type of convection with only about 10% of the ordinary convection occurrences producing such intensities. When average precipitation accumulation rates are considered, essentially all of the values above 2 mm h−1 are produced by the mesoscale systems. Yet today’s atmospheric models do not represent mesoscale-organized deep convective systems that are generally larger than current-day circulation model grid cell sizes but smaller than the resolved dynamical scales and last longer than the typical physics time steps. Thus, model-based arguments for how the extreme part of the tropical precipitation distribution might change in a warming climate are suspect.


2019 ◽  
Author(s):  
Martin Stengel ◽  
Stefan Stapelberg ◽  
Oliver Sus ◽  
Stephan Finkensieper ◽  
Benjamin Würzler ◽  
...  

Abstract. We present version 3 of the Cloud_cci AVHRR-PM dataset which contains a comprehensive set of cloud and radiative flux properties on a global scale covering the period of 1982 to 2016. The properties were retrieved from Advanced Very High Resolution Radiometer (AVHRR) measurements recorded by the afternoon (post meridiem, PM) satellites of the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) missions. The cloud properties in version 3 are of improved quality compared with the precursor dataset version 2, providing better global quality scores for cloud detection, cloud phase and ice water path based on validation results against A-Train sensors. Furthermore, the parameter set was extended by a suite of broadband radiative flux properties. They were calculated by combining the retrieved cloud properties with thermodynamic profiles from reanalysis and surface properties. The flux properties comprise upwelling and downwelling, shortwave and longwave broadband fluxes at the surface (bottom-of-atmosphere - BOA) and top-of-atmosphere (TOA). All fluxes were determined at AVHRR pixel level for all-sky and clear-sky conditions, which will particularly facilitate the assessment of the cloud radiative effect at BOA and TOA in future studies. Validation of the BOA downwelling fluxes against the Baseline Surface Radiation Network (BSRN) show a very good agreement. This is supported by comparisons of multi-annual mean maps with NASA's Clouds and the Earth's Radiant Energy System (CERES) products for all fluxes at BOA and TOA. The Cloud_cci AVHRR-PM version 3 dataset allows for a large variety of climate applications that build on cloud properties, radiative flux properties and/or the link between them. For the presented Cloud_cci AVHRR-PMv3 dataset a Digital Object Identifier has been issued: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003 (Stengel et al., 2019).


2016 ◽  
Vol 73 (2) ◽  
pp. 839-854 ◽  
Author(s):  
Giuseppe Torri ◽  
Zhiming Kuang

Abstract Precipitation-driven downdrafts are an important component of deep convective systems. They stabilize the atmosphere by injecting relatively cold and dry air into the boundary layer. They have also been invoked as responsible for balancing surface latent and sensible heat fluxes in the heat and moisture budget of tropical boundary layers. This study is focused on precipitation-driven downdrafts and basic aspects of their dynamics in a case of radiative–convective equilibrium. Using Lagrangian particle tracking, it is shown that such downdrafts have very low initial heights, with most parcels originating within 1.5 km from the surface. The tracking is also used to compute the contribution of downdrafts to the flux of moist static energy at the top of the boundary layer, and it is found that this is on the same order of magnitude as the contribution due to convective updrafts, but much smaller than that due to turbulent mixing across the boundary layer top in the environment. Furthermore, considering the mechanisms driving the downdrafts, it is shown that the work done by rain evaporation is less than half that done by condensate loading.


2014 ◽  
Vol 14 (16) ◽  
pp. 8701-8721 ◽  
Author(s):  
M. S. Johnston ◽  
S. Eliasson ◽  
P. Eriksson ◽  
R. M. Forbes ◽  
A. Gettelman ◽  
...  

Abstract. The representation of the effect of tropical deep convective (DC) systems on upper-tropospheric moist processes and outgoing longwave radiation is evaluated in the EC-Earth3, ECHAM6, and CAM5 (Community Atmosphere Model) climate models using satellite-retrieved data. A composite technique is applied to thousands of deep convective systems that are identified using local rain rate maxima in order to focus on the temporal evolution of the deep convective processes in the model and satellite-retrieved data. The models tend to over-predict the occurrence of rain rates that are less than ≈ 3 mm h−1 compared to Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA). While the diurnal distribution of oceanic rain rate maxima in the models is similar to the satellite-retrieved data, the land-based maxima are out of phase. Despite having a larger climatological mean upper-tropospheric relative humidity, models closely capture the satellite-derived moistening of the upper troposphere following the peak rain rate in the deep convective systems. Simulated cloud fractions near the tropopause are larger than in the satellite data, but the ice water contents are smaller compared with the satellite-retrieved ice data. The models capture the evolution of ocean-based deep convective systems fairly well, but the land-based systems show significant discrepancies. Over land, the diurnal cycle of rain is too intense, with deep convective systems occurring at the same position on subsequent days, while the satellite-retrieved data vary more in timing and geographical location. Finally, simulated outgoing longwave radiation anomalies associated with deep convection are in reasonable agreement with the satellite data, as well as with each other. Given the fact that there are strong disagreements with, for example, cloud ice water content, and cloud fraction, between the models, this study supports the hypothesis that such agreement with satellite-retrieved data is achieved in the three models due to different representations of deep convection processes and compensating errors.


2010 ◽  
Vol 23 (11) ◽  
pp. 2926-2940 ◽  
Author(s):  
Guillaume S. Mauger ◽  
Joel R. Norris

Abstract This study presents findings from the application of a new Lagrangian method used to evaluate the meteorological sensitivities of subtropical clouds in the northeast Atlantic. Parcel back trajectories are used to account for the influence of previous meteorological conditions on cloud properties, whereas forward trajectories highlight the continued evolution of cloud state. Satellite retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS), Clouds and the Earth’s Radiant Energy System (CERES), Quick Scatterometer (QuikSCAT), and Special Sensor Microwave Imager (SSM/I) provide measurements of cloud properties as well as atmospheric state. These are complemented by meteorological fields from the ECMWF operational analysis model. Observations are composited by cloud fraction, and mean trajectories are used to evaluate differences between each composite. Systematic differences in meteorological conditions are found to extend through the full 144-h trajectories, confirming the need to account for cloud history in assessing impacts on cloud properties. Most striking among these is the observation that strong synoptic-scale divergence is associated with reduced cloud fraction 0–12 h later. Consistent with prior work, the authors find that cloud cover variations correlate best with variations in lower-tropospheric stability (LTS) and SST that are 36 h upwind. In addition, the authors find that free-tropospheric humidity, along-trajectory SST gradient, and surface fluxes all correlate best at lags ranging from 0 to 12 h. Overall, cloud cover appears to be most strongly impacted by variations in surface divergence over short time scales (<12 h) and by factors influencing boundary layer stratification over longer time scales (12–48 h). Notably, in the early part of the trajectories several of the above associations are reversed. In particular, when trajectories computed for small cloud fraction scenes are traced back 72 h, they are found to originate in conditions of weaker surface divergence and stronger surface fluxes relative to those computed for large cloud fraction scenes. Coupled with a drier boundary layer and warmer SSTs, this suggests that a decoupling of the boundary layer precedes cloud dissipation. The authors develop an approximation for the stratification of the boundary layer and find further evidence that stratification plays a role in differentiating between developing and dissipating clouds.


Sign in / Sign up

Export Citation Format

Share Document