scholarly journals Dynamical Origin of Low-Frequency Variability in a Highly Nonlinear Midlatitude Coupled Model

2006 ◽  
Vol 19 (24) ◽  
pp. 6391-6408 ◽  
Author(s):  
S. Kravtsov ◽  
P. Berloff ◽  
W. K. Dewar ◽  
M. Ghil ◽  
J. C. McWilliams

Abstract A novel mechanism of decadal midlatitude coupled variability, which crucially depends on the nonlinear dynamics of both the atmosphere and the ocean, is presented. The coupled model studied involves quasigeostrophic atmospheric and oceanic components, which communicate with each other via a constant-depth oceanic mixed layer. A series of coupled and uncoupled experiments show that the decadal coupled mode is active across parameter ranges that allow the bimodality of the atmospheric zonal flow to coexist with oceanic turbulence. The latter is most intense in the regions of inertial recirculation (IR). Bimodality is associated with the existence of two distinct anomalously persistent zonal-flow modes, which are characterized by different latitudes of the atmospheric jet stream. The IR reorganizations caused by transitions of the atmosphere from its high- to low-latitude state and vice versa create sea surface temperature anomalies that tend to induce transition to the opposite atmospheric state. The decadal–interdecadal time scale of the resulting oscillation is set by the IR adjustment; the latter depends most sensitively on the oceanic bottom drag. The period T of the nonlinear oscillation is 7–25 yr for the range of parameters explored, with the most realistic parameter values yielding T ≈ 20 yr. Aside from this nonlinear oscillation, an interannual Rossby wave mode is present in all coupled experiments. This coupled mode depends neither on atmospheric bimodality, nor on ocean eddy dynamics; it is analogous to the mode found previously in a channel configuration. Its time scale in the model with a closed ocean basin is set by cross-basin wave propagation and equals 3–5 yr for a basin width comparable with the North Atlantic.

2011 ◽  
Vol 24 (5) ◽  
pp. 1542-1558 ◽  
Author(s):  
Jia-Bei Fang ◽  
Xiu-Qun Yang

Abstract Following Goodman and Marshall (hereinafter GM), an improved intermediate midlatitude coupled ocean–atmosphere model linearized around a basic state is developed. The model assumes a two-layer quasigeostrophic atmosphere overlying a quasigeostrophic upper ocean that consists of a constant-depth mixed layer, a thin entrainment layer, and a thermocline layer. The SST evolution is determined within the mixed layer by advection, entrainment, and air–sea flux. The atmospheric heating is specified at midlevel, which is parameterized in terms of both the SST and atmospheric temperature anomalies. With this coupled model, the dynamical features of unstable ocean–atmosphere interactions in the midlatitudes are investigated. The coupled model exhibits two types of coupled modes: the coupled oceanic Rossby wave mode and the SST-only mode. The SST-only mode decays over the entire range of wavelengths, whereas the coupled oceanic Rossby wave mode destabilizes over a certain range of wavelengths (∼10 500 km) when the atmospheric response to the heating is equivalent barotropic. The relative roles of different physical processes in destabilizing the coupled oceanic Rossby wave are examined. The main processes emphasized are the influence of entrainment and advection for determining SST evolution, and the atmospheric heating profile. Although either entrainment or advection can lead to unstable growth of the coupled oceanic Rossby wave with similar wavelength dependence for each case, the advection process is found to play the more important role, which differs from GM’s results in which the entrainment process is dominant. The structure of the unstable coupled mode is sensitive to the atmospheric heating profile. The inclusion of surface heating largely reduces the growth rate and stabilizes the coupled oceanic Rossby wave. In comparison with observations, it is demonstrated that the structure of the growing coupled mode derived from the authors’ model is closer to reality than that from the previous model.


2017 ◽  
Vol 74 (8) ◽  
pp. 2503-2523 ◽  
Author(s):  
Enver Ramirez ◽  
Pedro L. da Silva Dias ◽  
Carlos F. M. Raupp

Abstract In the present study a simplified multiscale atmosphere–ocean coupled model for the tropical interactions among synoptic, intraseasonal, and interannual scales is developed. Two nonlinear equatorial β-plane shallow-water equations are considered: one for the ocean and the other for the atmosphere. The nonlinear terms are the intrinsic advective nonlinearity and the air–sea coupling fluxes. To mimic the main differences between the fast atmosphere and the slow ocean, suitable anisotropic multispace/multitime scalings are applied, yielding a balanced synoptic–intraseasonal–interannual–El Niño (SInEN) regime. In this distinguished balanced regime, the synoptic scale is the fastest atmospheric time scale, the intraseasonal scale is the intermediate air–sea coupling time scale (common to both fluid flows), and El Niño refers to the slowest interannual ocean time scale. The asymptotic SInEN equations reveal that the slow wave amplitude evolution depends on both types of nonlinearities. Analytic solutions of the reduced SInEN equations for a single atmosphere–ocean resonant triad illustrate the potential of the model to understand slow-frequency variability in the tropics. The resonant nonlinear wind stress allows a mechanism for the synoptic-scale atmospheric waves to force intraseasonal variability in the ocean. The intraseasonal ocean temperature anomaly coupled with the atmosphere through evaporation forces synoptic and intraseasonal atmospheric variability. The wave–convection coupling provides another source for higher-order atmospheric variability. Nonlinear interactions of intraseasonal ocean perturbations may also force interannual oceanic variability. The constrains that determine the establishment of the atmosphere–ocean resonant coupling can be viewed as selection rules for the excitation of intraseasonal variability (MJO) or even slower interannual variability (El Niño).


2018 ◽  
Vol 31 (6) ◽  
pp. 2487-2509 ◽  
Author(s):  
Daling Li Yi ◽  
Bolan Gan ◽  
Lixin Wu ◽  
Arthur J. Miller

Based on the Simple Ocean Data Assimilation (SODA) product and 37 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) database, the North Pacific Gyre Oscillation (NPGO) and its decadal generation mechanisms are evaluated by studying the second leading modes of North Pacific sea surface height (SSH) and sea level pressure (SLP) as well as their dynamical connections. It is found that 17 out of 37 models can well simulate the spatial pattern and decadal time scales (10–30 yr) of the NPGO mode, which resembles the observation-based SODA results. Dynamical connections between the oceanic mode (NPGO) and the atmospheric mode [North Pacific Oscillation (NPO)] are strongly evident in both SODA and the 17 models. In particular, about 30%–40% of the variance of the NPGO variability, which generally exhibits a preferred time scale, can be explained by the NPO variability, which has no preferred time scale in most models. Two mechanisms of the decadal NPGO variability that had been proposed by previous studies are evaluated in SODA and the 17 models: 1) stochastic atmospheric forcing and oceanic spatial resonance and 2) low-frequency atmospheric teleconnections excited by the equatorial Pacific. Evaluation reveals that these two mechanisms are valid in SODA and two models (CNRM-CM5 and CNRM-CM5.2), whereas two models (CMCC-CM and CMCC-CMS) prefer the first mechanism and another two models (CMCC-CESM and IPSL-CM5B-LR) prefer the second mechanism. The other 11 models have no evident relations with the proposed two mechanisms, suggesting the need for a fundamental understanding of the decadal NPGO variability in the future.


2020 ◽  
Vol 33 (12) ◽  
pp. 5155-5172
Author(s):  
Quentin Jamet ◽  
William K. Dewar ◽  
Nicolas Wienders ◽  
Bruno Deremble ◽  
Sally Close ◽  
...  

AbstractMechanisms driving the North Atlantic meridional overturning circulation (AMOC) variability at low frequency are of central interest for accurate climate predictions. Although the subpolar gyre region has been identified as a preferred place for generating climate time-scale signals, their southward propagation remains under consideration, complicating the interpretation of the observed time series provided by the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array–Western Boundary Time Series (RAPID–MOCHA–WBTS) program. In this study, we aim at disentangling the respective contribution of the local atmospheric forcing from signals of remote origin for the subtropical low-frequency AMOC variability. We analyze for this a set of four ensembles of a regional (20°S–55°N), eddy-resolving (1/12°) North Atlantic oceanic configuration, where surface forcing and open boundary conditions are alternatively permuted from fully varying (realistic) to yearly repeating signals. Their analysis reveals the predominance of local, atmospherically forced signal at interannual time scales (2–10 years), whereas signals imposed by the boundaries are responsible for the decadal (10–30 years) part of the spectrum. Due to this marked time-scale separation, we show that, although the intergyre region exhibits peculiarities, most of the subtropical AMOC variability can be understood as a linear superposition of these two signals. Finally, we find that the decadal-scale, boundary-forced AMOC variability has both northern and southern origins, although the former dominates over the latter, including at the site of the RAPID array (26.5°N).


2015 ◽  
Vol 45 (10) ◽  
pp. 2457-2469 ◽  
Author(s):  
Gordon E. Swaters

AbstractA comprehensive theoretical study of the nonlinear hemispheric-scale midlatitude and cross-equatorial steady-state dynamics of a grounded deep western boundary current is given. The domain considered is an idealized differentially rotating, meridionally aligned basin with zonally varying parabolic bottom topography so that the model ocean shallows on both the western and eastern sides of the basin. Away from the equator, the flow is governed by nonlinear planetary geostrophic dynamics on sloping topography in which the potential vorticity equation can be explicitly solved. As the flow enters the equatorial region, it speeds up and becomes increasingly nonlinear and passes through two distinguished inertial layers referred to as the “intermediate” and “inner” inertial equatorial boundary layers, respectively. The flow in the intermediate equatorial region is shown to accelerate and turn eastward, forming a narrow equatorial jet. The qualitative properties of the solution presented are consistent with the known dynamical characteristics of the deep western boundary currents as they flow from the midlatitudes into the tropics. The predominately zonal flow across the ocean basin in the inner equatorial region (and its exit from the equatorial region) is determined in Part II of this study.


2005 ◽  
Vol 18 (13) ◽  
pp. 2441-2459 ◽  
Author(s):  
J. Zavala-Garay ◽  
C. Zhang ◽  
A. M. Moore ◽  
R. Kleeman

Abstract The possibility that the tropical Pacific coupled system linearly amplifies perturbations produced by the Madden–Julian oscillation (MJO) is explored. This requires an estimate of the low-frequency tail of the MJO. Using 23 yr of NCEP–NCAR reanalyses of surface wind and Reynolds SST, we show that the spatial structure that dominates the intraseasonal band (i.e., the MJO) also dominates the low-frequency band once the anomalies directly related to ENSO have been removed. This low-frequency contribution of the intraseasonal variability is not included in most ENSO coupled models used to date. Its effect in a coupled model of intermediate complexity has, therefore, been studied. It is found that this “MJO forcing” (τMJO) can explain a large fraction of the interannual variability in an asymptotically stable version of the model. This interaction is achieved via linear dynamics. That is, it is the cumulative effect of individual events that maintains ENSOs in this model. The largest coupled wind anomalies are initiated after a sequence of several downwelling Kelvin waves of the same sign have been forced by τMJO. The cumulative effect of the forced Kelvin waves is to persist the (small) SST anomalies in the eastern Pacific just enough for the coupled ocean–atmosphere dynamics to amplify the anomalies into a mature ENSO event. Even though τMJO explains just a small fraction of the energy contained in the stress not associated with ENSO, a large fraction of the modeled ENSO variability is excited by this forcing. The characteristics that make τMJO an optimal stochastic forcing for the model are discussed. The large zonal extent is an important factor that differentiates the MJO from other sources of stochastic forcing.


2006 ◽  
Vol 19 (20) ◽  
pp. 5227-5252 ◽  
Author(s):  
Serena Illig ◽  
Boris Dewitte

Abstract The relative roles played by the remote El Niño–Southern Oscillation (ENSO) forcing and the local air–sea interactions in the tropical Atlantic are investigated using an intermediate coupled model (ICM) of the tropical Atlantic. The oceanic component of the ICM consists of a six-baroclinic mode ocean model and a simple mixed layer model that has been validated from observations. The atmospheric component is a global atmospheric general circulation model developed at the University of California, Los Angeles (UCLA). In a forced context, the ICM realistically simulates both the sea surface temperature anomaly (SSTA) variability in the equatorial band, and the relaxation of the Atlantic northeast trade winds and the intensification of the equatorial westerlies in boreal spring that usually follows an El Niño event. The results of coupled experiments with or without Pacific ENSO forcing and with or without explicit air–sea interactions in the equatorial Atlantic indicate that the background energy in the equatorial Atlantic is provided by ENSO. However, the time scale of the variability and the magnitude of some peculiar events cannot be explained solely by ENSO remote forcing. It is demonstrated that the peak of SSTA variability in the 1–3-yr band as observed in the equatorial Atlantic is due to the local air–sea interactions and is not a linear response to ENSO. Seasonal phase locking in boreal summer is also the result of the local coupling. The analysis of the intrinsic sustainable modes indicates that the Atlantic El Niño is qualitatively a noise-driven stable system. Such a system can produce coherent interdecadal variability that is not forced by the Pacific or extraequatorial variability. It is shown that when a simple slab mixed layer model is embedded into the system to simulate the northern tropical Atlantic (NTA) SST variability, the warming over NTA following El Niño events have characteristics (location and peak phase) that depend on air–sea interaction in the equatorial Atlantic. In the model, the interaction between the equatorial mode and NTA can produce a dipolelike structure of the SSTA variability that evolves at a decadal time scale. The results herein illustrate the complexity of the tropical Atlantic ocean–atmosphere system, whose predictability jointly depends on ENSO and the connections between the Atlantic modes of variability.


2021 ◽  
pp. 1-38
Author(s):  
Tao Lian ◽  
Dake Chen

AbstractWhile both intrinsic low-frequency atmosphere–ocean interaction and multiplicative burst-like event affect the development of the El Niño–Southern Oscillation (ENSO), the strong nonlinearity in ENSO dynamics has prevented us from separating their relative contributions. Here we propose an online filtering scheme to estimate the role of the westerly wind bursts (WWBs), a type of aperiodic burst-like atmospheric perturbation over the western-central tropical Pacific, in the genesis of the centennial extreme 1997/98 El Niño using the CESM coupled model. This scheme highlights the deterministic part of ENSO dynamics during model integration, and clearly demonstrates that the strong and long-lasting WWB in March 1997 was essential for generating the 1997/98 El Niño. Without this WWB, the intrinsic low-frequency coupling would have only produced a weak warm event in late 1997 similar to the 2014/15 El Niño.


Sign in / Sign up

Export Citation Format

Share Document