scholarly journals Influence of Low-Frequency Indonesian Throughflow Transport on Temperatures in the Indian Ocean in a Coupled Model*

2007 ◽  
Vol 20 (7) ◽  
pp. 1339-1352 ◽  
Author(s):  
James T. Potemra ◽  
Niklas Schneider

Abstract The relationship between 3- and 10-yr variability in Indian Ocean temperatures and Indonesian throughflow (ITF) volume transport is examined using results from a 300-yr integration of the coupled NCAR Parallel Climate Model (PCM). Correlation and regression analyses are used with physical reasoning to estimate the relative contributions of changes in ITF volume transport and Indian Ocean surface atmospheric forcing in determining low-frequency temperature variations in the Indian Ocean. In the PCM, low-frequency variations in ITF transport are small, 2 Sv (1 Sv ≡ 106 m3 s−1), and have a minimal impact on sea surface temperatures (SSTs). Most of the low-frequency variance in Indian Ocean temperature (rms > 0.5°C) occurs in the upper thermocline (75–100 m). These variations largely reflect concurrent atmospheric forcing; ITF-induced temperature variability at this depth is limited to the outflow region between Java and Australia extending westward along a band between 10° and 15°S.

2015 ◽  
Vol 28 (13) ◽  
pp. 5017-5029 ◽  
Author(s):  
Jules B. Kajtar ◽  
Agus Santoso ◽  
Matthew H. England ◽  
Wenju Cai

Abstract The Pacific and Indian Oceans are connected by an oceanic passage called the Indonesian Throughflow (ITF). In this setting, modes of climate variability over the two oceanic basins interact. El Niño–Southern Oscillation (ENSO) events generate sea surface temperature anomalies (SSTAs) over the Indian Ocean that, in turn, influence ENSO evolution. This raises the question as to whether Indo-Pacific feedback interactions would still occur in a climate system without an Indonesian Throughflow. This issue is investigated here for the first time using a coupled climate model with a blocked Indonesian gateway and a series of partially decoupled experiments in which air–sea interactions over each ocean basin are in turn suppressed. Closing the Indonesian Throughflow significantly alters the mean climate state over the Pacific and Indian Oceans. The Pacific Ocean retains an ENSO-like variability, but it is shifted eastward. In contrast, the Indian Ocean dipole and the Indian Ocean basinwide mode both collapse into a single dominant and drastically transformed mode. While the relationship between ENSO and the altered Indian Ocean mode is weaker than that when the ITF is open, the decoupled experiments reveal a damping effect exerted between the two modes. Despite the weaker Indian Ocean SSTAs and the increased distance between these and the core of ENSO SSTAs, the interbasin interactions remain. This suggests that the atmospheric bridge is a robust element of the Indo-Pacific climate system, linking the Indian and Pacific Oceans even in the absence of an Indonesian Throughflow.


2020 ◽  
Vol 148 (4) ◽  
pp. 1553-1565 ◽  
Author(s):  
Carl J. Schreck ◽  
Matthew A. Janiga ◽  
Stephen Baxter

Abstract This study applies Fourier filtering to a combination of rainfall estimates from TRMM and forecasts from the CFSv2. The combined data are filtered for low-frequency (LF, ≥120 days) variability, the MJO, and convectively coupled equatorial waves. The filtering provides insight into the sources of skill for the CFSv2. The LF filter, which encapsulates persistent anomalies generally corresponding with SSTs, has the largest contribution to forecast skill beyond week 2. Variability within the equatorial Pacific is dominated by its response to ENSO, such that both the unfiltered and the LF-filtered forecasts are skillful over the Pacific through the entire 45-day CFSv2 forecast. In fact, the LF forecasts in that region are more skillful than the unfiltered forecasts or any combination of the filters. Verifying filtered against unfiltered observations shows that subseasonal variability has very little opportunity to contribute to skill over the equatorial Pacific. Any subseasonal variability produced by the model is actually detracting from the skill there. The MJO primarily contributes to CFSv2 skill over the Indian Ocean, particularly during March–May and MJO phases 2–5. However, the model misses opportunities for the MJO to contribute to skill in other regions. Convectively coupled equatorial Rossby waves contribute to skill over the Indian Ocean during December–February and the Atlantic Ocean during September–November. Convectively coupled Kelvin waves show limited potential skill for predicting weekly averaged rainfall anomalies since they explain a relatively small percent of the observed variability.


2017 ◽  
Author(s):  
Yair De-Leon ◽  
Nathan Paldor

Abstract. Using 20 years of accurately calibrated, high resolution, observations of Sea Surface Height Anomalies (SSHA) by satellite ‎borne altimeters we show that in the Indian Ocean south of the Australian coast the low frequency variations of SSHA are ‎dominated by westward propagating, trapped, i.e. non-harmonic, planetary waves. Our results demonstrate that the ‎meridional-dependent amplitudes of the SSHA are large only within a few degrees of latitude next to the South-Australian ‎coast while farther in the ocean they are uniformly small. This meridional variation of the SSHA signal is typical of the ‎amplitude structure in the trapped wave theory. The westward propagation speed of the SSHA signals is analyzed by ‎employing three different methods of estimation. Each one of these methods yields speed estimates that can vary widely ‎between adjacent latitudes but the combination of at least two of the three methods yields much smoother variation. The ‎estimates obtained in this manner show that the observed phase speeds at different latitudes exceed the phase speeds of ‎harmonic Rossby (Planetary) waves by 140 % to 200 %. In contrast, the theory of trapped Rossby (Planetary) waves in a ‎domain bounded by a wall on its equatorward side yields phase speeds that approximate more closely the observed phase ‎speeds.‎


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Salvienty Makarim ◽  
Janet Sprintall ◽  
Zhiyu Liu ◽  
Weidong Yu ◽  
Agus Santoso ◽  
...  

2011 ◽  
Vol 24 (14) ◽  
pp. 3593-3608 ◽  
Author(s):  
Dongliang Yuan ◽  
Jing Wang ◽  
Tengfei Xu ◽  
Peng Xu ◽  
Zhou Hui ◽  
...  

Abstract Controlled numerical experiments using ocean-only and ocean–atmosphere coupled general circulation models show that interannual sea level depression in the eastern Indian Ocean during the Indian Ocean dipole (IOD) events forces enhanced Indonesian Throughflow (ITF) to transport warm water from the upper-equatorial Pacific Ocean to the Indian Ocean. The enhanced transport produces elevation of the thermocline and cold subsurface temperature anomalies in the western equatorial Pacific Ocean, which propagate to the eastern equatorial Pacific to induce significant coupled evolution of the tropical Pacific oceanic and atmospheric circulation. Analyses suggest that the IOD-forced ITF transport anomalies are about the same amplitudes as those induced by the Pacific ENSO. Results of the coupled model experiments suggest that the anomalies induced by the IOD persist in the equatorial Pacific until the year following the IOD event, suggesting the importance of the oceanic channel in modulating the interannual climate variations of the tropical Pacific Ocean at the time lag beyond one year.


2017 ◽  
Vol 34 (1) ◽  
pp. 207-223 ◽  
Author(s):  
Dorian Cazau ◽  
Julien Bonnel ◽  
Joffrey Jouma’a ◽  
Yves le Bras ◽  
Christophe Guinet

AbstractThe underwater ambient sound field contains quantifiable information about the physical and biological marine environment. The development of operational systems for monitoring in an autonomous way the underwater acoustic signal is necessary for many applications, such as meteorology and biodiversity protection. This paper develops a proof-of-concept study on performing marine soundscape analysis from acoustic passive recordings of free-ranging biologged southern elephant seals (SES). A multivariate multiple linear regression (MMLR) framework is used to predict the measured ambient noise, modeled as a multivariate acoustic response, from SES (depth, speed, and acceleration) and environmental (wind) variables. Results show that the acoustic contributions of SES variables affect mainly low-frequency sound pressure levels (SPLs), while frequency bands above 3 kHz are less corrupted by SES displacement and allow a good measure of the Indian Ocean soundscape. Also, preliminary results toward the development of a mobile embedded weather sensor are presented. In particular, wind speed estimation can be performed from the passive acoustic recordings with an accuracy of 2 m s−1, using a rather simple multiple linear model.


Author(s):  
Janet Sprintall ◽  
Susan E. Wijffels ◽  
Robert Molcard ◽  
Indra Jaya

2012 ◽  
Vol 25 (21) ◽  
pp. 7743-7763 ◽  
Author(s):  
A. Santoso ◽  
M. H. England ◽  
W. Cai

The impact of Indo-Pacific climate feedback on the dynamics of El Niño–Southern Oscillation (ENSO) is investigated using an ensemble set of Indian Ocean decoupling experiments (DCPL), utilizing a millennial integration of a coupled climate model. It is found that eliminating air–sea interactions over the Indian Ocean results in various degrees of ENSO amplification across DCPL simulations, with a shift in the underlying dynamics toward a more prominent thermocline mode. The DCPL experiments reveal that the net effect of the Indian Ocean in the control runs (CTRL) is a damping of ENSO. The extent of this damping appears to be negatively correlated to the coherence between ENSO and the Indian Ocean dipole (IOD). This type of relationship can arise from the long-lasting ENSO events that the model simulates, such that developing ENSO often coincides with Indian Ocean basin-wide mode (IOBM) anomalies during non-IOD years. As demonstrated via AGCM experiments, the IOBM enhances western Pacific wind anomalies that counteract the ENSO-enhancing winds farther east. In the recharge oscillator framework, this weakens the equatorial Pacific air–sea coupling that governs the ENSO thermocline feedback. Relative to the IOBM, the IOD is more conducive for ENSO growth. The net damping by the Indian Ocean in CTRL is thus dominated by the IOBM effect which is weaker with stronger ENSO–IOD coherence. The stronger ENSO thermocline mode in DCPL is consistent with the absence of any IOBM anomalies. This study supports the notion that the Indian Ocean should be viewed as an integral part of ENSO dynamics.


Sign in / Sign up

Export Citation Format

Share Document