Impact of GVF Derivation Methods on Noah Land Surface Model Simulations and WRF Model Forecasts

2018 ◽  
Vol 19 (12) ◽  
pp. 1917-1933 ◽  
Author(s):  
Li Fang ◽  
Xiwu Zhan ◽  
Christopher R. Hain ◽  
Jifu Yin ◽  
Jicheng Liu

Abstract Green vegetation fraction (GVF) plays a crucial role in the atmosphere–land water and energy exchanges. It is one of the essential parameters in the Noah land surface model (LSM) that serves as the land component of a number of operational numerical weather prediction models at the National Centers for Environmental Prediction (NCEP) of NOAA. The satellite GVF products used in NCEP models are derived from a simple linear conversion of either the normalized difference vegetation index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR) currently or the enhanced vegetation index (EVI) from the Visible Infrared Imaging Radiometer Suite (VIIRS) planned for the near future. Since the NDVI or EVI is a simple spectral index of vegetation cover, GVFs derived from them may lack the biophysical meaning required in the Noah LSM. Moreover, the NDVI- or EVI-based GVF data products may be systematically biased over densely vegetated regions resulting from the saturation issue associated with spectral vegetation indices. On the other hand, the GVF is physically related to the leaf area index (LAI), and thus it could be beneficial to derive GVF from LAI data products. In this paper, the EVI-based and the LAI-based GVF derivation methods are mathematically analyzed and are found to be significantly different from each other. Impacts of GVF differences on the Noah LSM simulations and on weather forecasts of the Weather Research and Forecasting (WRF) Model are further assessed. Results indicate that LAI-based GVF outperforms the EVI-based one when used in both the offline Noah LSM and WRF Model.

2011 ◽  
Vol 42 (2-3) ◽  
pp. 95-112 ◽  
Author(s):  
Venkat Lakshmi ◽  
Seungbum Hong ◽  
Eric E. Small ◽  
Fei Chen

The importance of land surface processes has long been recognized in hydrometeorology and ecology for they play a key role in climate and weather modeling. However, their quantification has been challenging due to the complex nature of the land surface amongst other reasons. One of the difficult parts in the quantification is the effect of vegetation that are related to land surface processes such as soil moisture variation and to atmospheric conditions such as radiation. This study addresses various relational investigations among vegetation properties such as Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), surface temperature (TSK), and vegetation water content (VegWC) derived from satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and EOS Advanced Microwave Scanning Radiometer (AMSR-E). The study provides general information about a physiological behavior of vegetation for various environmental conditions. Second, using a coupled mesoscale/land surface model, we examine the effects of vegetation and its relationship with soil moisture on the simulated land–atmospheric interactions through the model sensitivity tests. The Weather Research and Forecasting (WRF) model was selected for this study, and the Noah land surface model (Noah LSM) implemented in the WRF model was used for the model coupled system. This coupled model was tested through two parameterization methods for vegetation fraction using MODIS data and through model initialization of soil moisture from High Resolution Land Data Assimilation System (HRLDAS). Finally, this study evaluates the model improvements for each simulation method.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 815
Author(s):  
Marcelo Somos-Valenzuela ◽  
Francisco Manquehual-Cheuque

The use of numerical weather prediction (NWP) model to dynamically downscale coarse climate reanalysis data allows for the capture of processes that are influenced by land cover and topographic features. Climate reanalysis downscaling is useful for hydrology modeling, where catchment processes happen on a spatial scale that is not represented in reanalysis models. Selecting proper parameterization in the NWP for downscaling is crucial to downscale the climate variables of interest. In this work, we are interested in identifying at least one combination of physics in the Weather Research Forecast (WRF) model that performs well in our area of study that covers the Baker River Basin and the Northern Patagonian Icecap (NPI) in the south of Chile. We used ERA-Interim reanalysis data to run WRF in twenty-four different combinations of physics for three years in a nested domain of 22.5 and 4.5 km with 34 vertical levels. From more to less confident, we found that, for the planetary boundary layer (PBL), the best option is to use YSU; for the land surface model (LSM), the best option is the five-Layer Thermal, RRTM for longwave, Dudhia for short wave radiation, and Thompson for the microphysics. In general, the model did well for temperature (average, minimum, maximum) for most of the observation points and configurations. Precipitation was good, but just a few configurations stood out (i.e., conf-9 and conf-10). Surface pressure and Relative Humidity results were not good or bad, and it depends on the statistics with which we evaluate the time series (i.e., KGE or NSE). The results for wind speed were inferior; there was a warm bias in all of the stations. Once we identify the best configuration in our experiment, we run WRF for one year using ERA5 and FNL0832 climate reanalysis. Our results indicate that Era-interim provided better results for precipitation. In the case of temperature, FNL0832 gave better results; however, all of the models’ performances were good. Therefore, working with ERA-Interim seems the best option in this region with the physics selected. We did not experiment with changes in resolution, which may have improved results with ERA5 that has a better spatial and temporal resolution.


2006 ◽  
Vol 33 (13) ◽  
Author(s):  
Jesse Miller ◽  
Michael Barlage ◽  
Xubin Zeng ◽  
Helin Wei ◽  
Kenneth Mitchell ◽  
...  

2008 ◽  
Vol 136 (12) ◽  
pp. 4915-4941 ◽  
Author(s):  
Margaret A. LeMone ◽  
Mukul Tewari ◽  
Fei Chen ◽  
Joseph G. Alfieri ◽  
Dev Niyogi

Abstract Sources of differences between observations and simulations for a case study using the Noah land surface model–based High-Resolution Land Data Assimilation System (HRLDAS) are examined for sensible and latent heat fluxes H and LE, respectively; surface temperature Ts; and vertical temperature difference T0 − Ts, where T0 is at 2 m. The observational data were collected on 29 May 2002, using the University of Wyoming King Air and four surface towers placed along a sparsely vegetated 60-km north–south flight track in the Oklahoma Panhandle. This day had nearly clear skies and a strong north–south soil-moisture gradient, with wet soils and widespread puddles at the south end of the track and drier soils to the north. Relative amplitudes of H and LE horizontal variation were estimated by taking the slope of the least squares best-fit straight line ΔLE/ΔH on plots of time-averaged LE as a function of time-averaged H for values along the track. It is argued that observed H and LE values departing significantly from their slope line are not associated with surface processes and, hence, need not be replicated by HRLDAS. Reasonable agreement between HRLDAS results and observed data was found only after adjusting the coefficient C in the Zilitinkevich equation relating the roughness lengths for momentum and heat in HRLDAS from its default value of 0.1 to a new value of 0.5. Using C = 0.1 and adjusting soil moisture to match the observed near-surface values increased horizontal variability in the right sense, raising LE and lowering H over the moist south end. However, both the magnitude of H and the amplitude of its horizontal variability relative to LE remained too large; adjustment of the green vegetation fraction had only a minor effect. With C = 0.5, model-input green vegetation fraction, and our best-estimate soil moisture, H, LE, ΔLE/ΔH, and T0 − Ts, were all close to observed values. The remaining inconsistency between model and observations—too high a value of H and too low a value of LE over the wet southern end of the track—could be due to HRLDAS ignoring the effect of open water. Neglecting the effect of moist soils on the albedo could also have contributed.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Li Fang ◽  
Xiwu Zhan ◽  
Christopher R. Hain ◽  
Jicheng Liu

Green vegetation fraction (GVF) is one of the input parameters of the Noah land surface model (LSM) that is the land component of a number of operational numerical weather prediction (NWP) models at the National Centers for Environmental Prediction (NCEP) of NOAA. The Noah LSM in current NCEP operational NWP models has been using static multiyear averages of monthly GVF derived from satellite observations of NOAA Advanced Very High Resolution Radiometer (AVHRR) normalized difference vegetation index. The multiyear averages of GVF are evidently not the representative of actual conditions of the land surface vegetation cover. This study used a near-real-time (NRT) GVF data set generated from the 8-day composite of the leaf area index product from the Moderate Resolution Imaging Spectroradiometer (MODIS) to assess the impact of NRT GVF on off-line Noah LSM simulations and NWP forecast model. Simulations of the off-line Noah LSM in the Land Information System (LIS) and weather forecasts of the NASA-Unified Weather and Research Forecasting (NUWRF) were obtained using either the static multiyear average AVHRR GVF data set or the NRT MODIS GVF while meteorological forcing data and other settings were kept the same. The off-line simulations and WRF forecasts were then compared against in situ measurements or reanalysis products to assess the impact of using NRT GVF. Improvements of both soil moisture simulations as well as forecasts of 2-meter air temperature and humidity and precipitation from NUWRF were observed using the NRT GVF data products. The RMSE in SM estimates from the off-line Noah model is reduced by around 1.0% (1.41%) during the green-up phase and by 1.48% (2.24%) over the senescence phase for the surface (root zone) SM simulations. Around 82.3% validation sites (out of 1178 sites) showed positive impact on coupled WRF model with the insertion of NRT GVF.


2016 ◽  
Author(s):  
Thomas Schwitalla ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
Kirsten Warrach-Sagi

Abstract. The impact of a convection permitting (CP) northern hemisphere latitude-belt simulation with the Weather Research and Forecasting (WRF) model was investigated during the July and August 2013. For this application, the WRF model together with the NOAH land-surface model (LSM) was applied at two different horizontal resolutions, 0.03° (HIRES) and 0.12° (LOWRES). The set-up as a latitude-belt domain avoids disturbances that originate from the western and eastern boundaries and therefore allows to study the impact of model resolution and physical parameterizations on the results. Both simulations were forced by ECMWF operational analysis data at the northern and southern domain boundaries and the high-resolution Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data at the sea surface. The simulations are compared to the operational ECMWF analysis for the representation of large scale features. To compare the simulated precipitation, the operational ECMWF forecast, the CPC MORPHing (CMORPH), and the ENSEMBLES gridded observation precipitation data set (E-OBS) were used. Compared to the operational high-resolution ECMWF analysis, both simulations are able to capture the large scale circulation pattern though the strength of the Pacific high is considerably overestimated in the LOWRES simulation. Major differences between ECMWF and WRF occur during July 2013 when the lower resolution simulation shows a significant negative bias over the North Atlantic which is not observed in the CP simulation. The analysis indicates deficiencies in the applied combinations of cloud microphysics and convection parametrization on the coarser grid scale in subpolar regions. The overall representation of the 500 hPa geopotential height surface is also improved by the CP simulation compared to the LOWRES simulation apart across Newfoundland where the geopotential height is higher than in the LOWRES simulation due to a northward shift of the location of the Atlantic high pressure system. Both simulations show higher wind speeds in the boundary layer by about 1.5 m s−1 compared to the the ECMWF analysis. Due to the higher surface evaporation, this results in a moist bias of 0.5 g kg−1 at 925 hPa in the planetary boundary layer compared to the ECMWF analysis. Major differences between ECMWF and WRF occur in the simulation of the 2-m temperatures over the Asian desert and steppe regions. They are significantly higher in WRF by about 5 K both during day- and night-time presumably as a result of different soil hydraulic parameters used in the NOAH land surface model for steppe regions. The precipitation of the HIRES simulation shows a better spatial agreement with CMORPH especially over mountainous terrain. The overall bias reduces from 80 mm at the coarser resolution to 50 mm in the HIRES simulation and the root mean square error is reduced by about 35 % when compared to the CMORPH precipitation analysis. The precipitation distribution agrees much better with the CMORPH data than the LOWRES simulation which tends to overestimate precipitation, mainly caused by the convection parametrization. Especially over Europe the CP resolution reduces the precipitation bias by about 30 % to 20 mm as a result of a better terrain representation and due to the avoidance of the convection parameterization.


2015 ◽  
Vol 8 (4) ◽  
pp. 3197-3218
Author(s):  
S. Park ◽  
S. K. Park

Abstract. Snow albedo plays a critical role in calculating the energy budget, but parameterization of the snow surface albedo is still under great uncertainty. It varies with snow grain size, snow cover thickness, snow age, forest shading factor and other variables. Snow albedo of forest is typically lower than that of short vegetation; thus snow albedo is dependent on the spatial distributions of characteristic land cover and on the canopy density and structure. In the Noah land surface model with multiple physics options (Noah-MP), almost all vegetation types in East Asia during winter have the minimum values of leaf area index (LAI) and stem area index (SAI), which are too low and do not consider the vegetation types. Because LAI and SAI are represented in terms of photosynthetic activeness, the vegetation effect rarely exerts on the surface albedo in winter in East Asia with only these parameters. Thus, we investigated the vegetation effects on the snow-covered albedo from observations and evaluated the model improvement by considering such effect. We found that calculation of albedo without proper reflection of the vegetation effect is mainly responsible for the large positive bias in winter. Therefore, we developed new parameters, called leaf index (LI) and stem index (SI), which properly manage the effect of vegetation structure on the winter albedo. As a result, the Noah-MP's performance in albedo has been significantly improved – RMSE is reduced by approximately 73%.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
R. Shrivastava ◽  
S. K. Dash ◽  
R. B. Oza ◽  
D. N. Sharma

This paper deals with the evaluation of parameterization schemes in the WRF model for estimation of mixing height. Numerical experiments were performed using various combinations of parameterization schemes and the results were compared with the mixing height estimated using the radiosonde observations taken by the India Meteorological Department (IMD) at Mangalore site for selected days of the warm and cold season in the years 2004–2007. The results indicate that there is a large variation in the mixing heights estimated by the model using various combinations of parameterization schemes. It was seen that the physics option consisting of Mellor Yamada Janjic (Eta) as the PBL scheme, Monin Obukhov Janjic (Eta) as the surface layer scheme, and Noah land surface model performs reasonably well in reproducing the observed mixing height at this site for both the seasons as compared to the other combinations tested. This study also showed that the choice of the land surface model can have a significant impact on the simulation of mixing height by a prognostic model.


2019 ◽  
Author(s):  
Kristina Bohm ◽  
Joachim Ingwersen ◽  
Josipa Milovac ◽  
Thilo Streck

Abstract. Land surface models are essential parts of climate and weather models. The widely used Noah-MP land surface model requires information on the leaf area index (LAI) and green vegetation fraction (GVF) as key inputs of its evapotranspiration scheme. The model aggregates all agricultural areas into a land use class termed Cropland and Pasture. In a previous study we showed that, on a regional scale, GVF has a bimodal distribution formed by two crop groups differing in phenology and growth dynamics: early covering crops (ECC, ex.: winter wheat, winter rapeseed, winter barley) and late covering crops (LCC, ex.: corn, silage maize, sugar beet). That result can be generalized for Central Europe. The present study quantifies the effect of splitting the land use class Cropland and Pasture of Noah-MP into ECC and LCC on surface energy fluxes and temperature. We further studied the influence of increasing the LCC share, which in the study area (the Kraichgau region, southwest Germany) is mainly the result of heavily subsidized biomass production, on energy partitioning at the land surface. We used the GVF dynamics derived from high-resolution (5 m × 5 m) RapidEye satellite data and measured LAI data for the simulations. Our results confirm that GVF and LAI strongly influence the partitioning of surface energy fluxes, resulting in pronounced differences between ECC and LCC simulations. Splitting up the generic crop into ECC and LCC had the strongest effect on land surface exchange processes in July–August. During this period, ECC are at the senescence growth stage or already harvested, while LCC have a well-developed, ground-covering canopy. The generic crop resulted in humid bias, i.e. an increase of evapotranspiration by +0.5 mm d−1 (LE: 1.3 MJ m−2 d−1), decrease of H by 1.2 MJ m−2 d−1 and decrease of surface temperature by −1 °C. The bias increased as the shares of ECC and LCC became similar. The observed differences will impact the simulations of processes in the planetary boundary layer. Increasing the LCC share from 28 to 38 % in the Kraichgau region led to a decrease of LE and a heating up of the land surface in the early growing season. Over the second part of the season, LE increased and the land surface cooled down by up to 1 °C.


Sign in / Sign up

Export Citation Format

Share Document