scholarly journals Improving Multisensor Precipitation Estimation via Adaptive Conditional Bias–Penalized Merging of Rain Gauge Data and Remotely Sensed Quantitative Precipitation Estimates

2019 ◽  
Vol 20 (12) ◽  
pp. 2347-2365 ◽  
Author(s):  
Ali Jozaghi ◽  
Mohammad Nabatian ◽  
Seongjin Noh ◽  
Dong-Jun Seo ◽  
Lin Tang ◽  
...  

Abstract We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multisensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation estimates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For comparative evaluation, true validation is carried out over the continental United States (CONUS) for 13–30 September 2015 and 7–9 October 2016. The hourly gauge data, radar-only QPE, and satellite QPE used are from the Hydrometeorological Automated Data System, Multi-Radar Multi-Sensor System, and Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), respectively. For radar–satellite fusion, conditional bias–penalized Fisher estimation is used. The reference merging technique compared is ordinary cokriging (OCK) used in the National Weather Service Multisensor Precipitation Estimator. It is shown that, beyond the reduction due to mean field bias (MFB) correction, both OCK and adaptive CBPCK additionally reduce the unconditional root-mean-square error (RMSE) of radar-only QPE by 9%–16% over the CONUS for the two periods, and that adaptive CBPCK is superior to OCK for estimation of hourly amounts exceeding 1 mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for September 2015 reduces the unconditional RMSE of the MFB-corrected radar by 4% and 6% over the entire and western half of the CONUS, respectively, but is inferior to the MFB-corrected radar for estimation of hourly amounts exceeding 7 mm. Adaptive CBPCK should hence be favored over OCK for estimation of significant amounts of precipitation despite larger computational cost, and the SCaMPR QPE should be used selectively in multisensor QPE.

Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 217 ◽  
Author(s):  
Jennifer Kreklow ◽  
Björn Tetzlaff ◽  
Benjamin Burkhard ◽  
Gerald Kuhnt

Precipitation is a crucial driver for many environmental processes and weather radars are capable of providing precipitation information with high spatial and temporal resolution. However, radar-based quantitative precipitation estimates (QPE) are also subject to various potential uncertainties. This study explored the development, uncertainties and potentials of the hourly operational German radar-based and gauge-adjusted QPE called RADOLAN and its reanalyzed radar climatology dataset named RADKLIM in comparison to ground-truth rain gauge data. The precipitation datasets were statistically analyzed across various time scales ranging from annual and seasonal aggregations to hourly rainfall intensities in regard to their capability to map long-term precipitation distribution, to detect low intensity rainfall and to capture heavy rainfall. Moreover, the impacts of season, orography and distance from the radar on long-term precipitation sums were examined in order to evaluate dataset performance and to describe inherent biases. Results revealed that both radar products tend to underestimate total precipitation sums and particularly high intensity rainfall. However, our analyses also showed significant improvements throughout the RADOLAN time series as well as major advances through the climatologic reanalysis regarding the correction of typical radar artefacts, orographic and winter precipitation as well as range-dependent attenuation.


Author(s):  
Yuxiang He ◽  
Yu Zhang ◽  
Robert Kuligowski ◽  
Robert Cifelli ◽  
David Kitzmiller

This paper presents a new and enhanced fusion module for the Multi-Sensor Precipitation Estimator (MPE) that would objectively blend real-time satellite quantitative precipitation estimates (SQPE) with radar and gauge estimates. This module consists of a preprocessor that mitigates systematic bias in SQPE, and a two-way blending routine that statistically fuses adjusted SQPE with radar estimates. The preprocessor not only corrects systematic bias in SQPE, but also improves the spatial distribution of precipitation based on SQPE and makes it closely resemble that of radar-based observations. It uses a more sophisticated radar-satellite merging technique to blend preprocessed datasets, and provides a better overall QPE product. The performance of the new satellite-radar-gauge blending module is assessed using independent rain gauge data over a 5-year period between 2003-2007, and the assessment evaluates the accuracy of newly developed satellite-radar-gauge (SRG) blended products versus that of radar-gauge products (which represents MPE algorithm currently used in the NWS operations) over two regions: I) inside radar effective coverage and II) immediately outside radar coverage. The outcomes of the evaluation indicate a) ingest of SQPE over areas within effective radar coverage improve the quality of QPE by mitigating the errors in radar estimates in region I; and b) blending of radar, gauge, and satellite estimates over region II leads to reduction of errors relative to bias-corrected SQPE. In addition, the new module alleviates the discontinuities along the boundaries of radar effective coverage otherwise seen when SQPE is used directly to fill the areas outside of effective radar coverage.


Author(s):  
Jennifer Kreklow ◽  
Björn Tetzlaff ◽  
Benjamin Burkhard ◽  
Gerald Kuhnt

Precipitation is a crucial driver for many environmental processes and weather radars are capable of providing precipitation information with high spatial and temporal resolution. However, radar-based quantitative precipitation estimates (QPE) are also subject to various potential uncertainties. This study explores the development, uncertainties and potentials of the hourly operational German radar-based and gauge-adjusted QPE called RADOLAN and its reanalysed radar climatology dataset named RADKLIM in comparison to ground-truth rain gauge data. The precipitation datasets are statistically analysed across various time scales ranging from annual and seasonal aggregations to hourly rainfall intensities in regard to their capability to map long-term precipitation distribution, to detect low intensity rainfall and to capture heavy rainfall. Moreover, the impacts of season, orography and distance from the radar on long-term precipitation sums are examined in order to evaluate dataset performance and to describe inherent biases. Results revealed that both radar products tend to underestimate total precipitation sums and particularly high intensity rainfall. But our analyses also showed significant improvements throughout the RADOLAN time series as well as major advances through the climatologic reanalysis regarding the correction of typical radar artefacts, orographic and winter precipitation as well as range-dependent attenuation.


2019 ◽  
Vol 11 (24) ◽  
pp. 2992 ◽  
Author(s):  
Jintao Xu ◽  
Ziqiang Ma ◽  
Guoqiang Tang ◽  
Qingwen Ji ◽  
Xiaoxiao Min ◽  
...  

Satellite-based quantitative precipitation estimates (QPE) with a fine quality are of great importance to global water cycle and matter and energy exchange research. In this study, we firstly apply various statistical indicators to evaluate and compare the main current satellite-based precipitation products from Chinese Fengyun (FY)-2 and the Global Precipitation Measurement (GPM), respectively, over mainland China in summer, 2018. We find that (1) FY-2G QPE and Integrated Multi-satellitE Retrievals for GPM (IMERG) perform significantly better than FY-2E QPE, using rain gauge data, with correlation coefficients (CC) varying from 0.65 to 0.90, 0.80 to 0.90, and 0.40 to 0.53, respectively; (2) IMERG agrees well with rain gauge data at monthly scale, while it performs worse than FY-2G QPE at hourly and daily scales, which may be caused by its algorithms; (3) FY-2G QPE underestimates the precipitation in summer, while FY-2E QPE and IMERG generally overestimate the precipitation; (4) there is an interesting error phenomenon in that both FY-based and GPM-based precipitation products perform more poorly during the period from 06:00 to 10:00 UTC than other periods at diurnal scale; and (5) FY-2G QPE agrees well with IMERG in terms of spatial patterns and consistency (CC of ~0.81). These findings can provide valuable preliminary references for improving next generation satellite-based QPE retrieval algorithms and instructions for applying these data in various practical fields.


2015 ◽  
Vol 16 (4) ◽  
pp. 1676-1699 ◽  
Author(s):  
Luciana K. Cunha ◽  
James A. Smith ◽  
Witold F. Krajewski ◽  
Mary Lynn Baeck ◽  
Bong-Chul Seo

Abstract The NEXRAD program has recently upgraded the WSR-88D network observational capability with dual polarization (DP). In this study, DP quantitative precipitation estimates (QPEs) provided by the current version of the NWS system are evaluated using a dense rain gauge network and two other single-polarization (SP) rainfall products. The analyses are performed for the period and spatial domain of the Iowa Flood Studies (IFloodS) campaign. It is demonstrated that the current version (2014) of QPE from DP is not superior to that from SP mainly because DP QPE equations introduce larger bias than the conventional rainfall–reflectivity [i.e., R(Z)] relationship for some hydrometeor types. Moreover, since the QPE algorithm is based on hydrometeor type, abrupt transitions in the phase of hydrometeors introduce errors in QPE with surprising variation in space that cannot be easily corrected using rain gauge data. In addition, the propagation of QPE uncertainties across multiple hydrological scales is investigated using a diagnostic framework. The proposed method allows us to quantify QPE uncertainties at hydrologically relevant scales and provides information for the evaluation of hydrological studies forced by these rainfall datasets.


2020 ◽  
Vol 12 (4) ◽  
pp. 678 ◽  
Author(s):  
Zhi-Weng Chua ◽  
Yuriy Kuleshov ◽  
Andrew Watkins

This study evaluates the U.S. National Oceanographic and Atmospheric Administration’s (NOAA) Climate Prediction Center morphing technique (CMORPH) and the Japan Aerospace Exploration Agency’s (JAXA) Global Satellite Mapping of Precipitation (GSMaP) satellite precipitation estimates over Australia across an 18 year period from 2001 to 2018. The evaluation was performed on a monthly time scale and used both point and gridded rain gauge data as the reference dataset. Overall statistics demonstrated that satellite precipitation estimates did exhibit skill over Australia and that gauge-blending yielded a notable increase in performance. Dependencies of performance on geography, season, and rainfall intensity were also investigated. The skill of satellite precipitation detection was reduced in areas of elevated topography and where cold frontal rainfall was the main precipitation source. Areas where rain gauge coverage was sparse also exhibited reduced skill. In terms of seasons, the performance was relatively similar across the year, with austral summer (DJF) exhibiting slightly better performance. The skill of the satellite precipitation estimates was highly dependent on rainfall intensity. The highest skill was obtained for moderate rainfall amounts (2–4 mm/day). There was an overestimation of low-end rainfall amounts and an underestimation in both the frequency and amount for high-end rainfall. Overall, CMORPH and GSMaP datasets were evaluated as useful sources of satellite precipitation estimates over Australia.


2008 ◽  
Vol 5 (5) ◽  
pp. 2975-3003 ◽  
Author(s):  
E. Goudenhoofdt ◽  
L. Delobbe

Abstract. Accurate quantitative precipitation estimates are of crucial importance for hydrological studies and applications. When spatial precipitation fields are required, rain gauge measurements are often combined with weather radar observations. In this paper, we evaluate several radar-gauge merging methods with various degrees of complexity: from mean field bias correction to geostatical merging techniques. The study area is the Walloon region of Belgium, which is mostly located in the Meuse catchment. Observations from a C-band Doppler radar and a dense rain gauge network are used to retrieve daily rainfall accumulations over this area. The relative performance of the different merging methods are assessed through a comparison against daily measurements from an independent gauge network. A 3-year verification is performed using several statistical quality parameters. It appears that the geostatistical merging methods perform best with the mean absolute error decreasing by 40% with respect to the original data. A mean field bias correction still achieves a reduction of 25%. A seasonal analysis shows that the benefit of using radar observations is particularly significant during summer. The effect of the network density on the performance of the methods is also investigated. For this purpose, a simple approach to remove gauges from a network is proposed. The analysis reveals that the sensitivity is relatively high for the geostatistical methods but rather small for the simple methods. The geostatistical methods give the best results for all network densities except for a very low density of 1 gauge per 500 km2 where a range-dependent adjustment complemented with a static local bias correction performs best.


Hydrology ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 95 ◽  
Author(s):  
Tam ◽  
Abd Rahman ◽  
Harun ◽  
Hanapi ◽  
Kaoje

The advent of satellite rainfall products can provide a solution to the scarcity of observed rainfall data. The present study aims to evaluate the performance of high spatial-temporal resolution satellite rainfall products (SRPs) and rain gauge data in hydrological modelling and flood inundation mapping. Four SRPs, Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) - Early, - Late (IMERG-E, IMERG-L), Global Satellite Mapping of Precipitation-Near Real Time (GSMaP-NRT), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks- Cloud Classification System (PERSIANN-CCS) and rain gauge data were used as the primary input to a hydrological model, Rainfall-Runoff-Inundation (RRI) and the simulated flood level and runoff were compared with the observed data using statistical metrics. GSMaP showed the best performance in simulating hourly runoff with the lowest relative bias (RB) and the highest Nash-Sutcliffe efficiency (NSE) of 4.9% and 0.79, respectively. Meanwhile, the rain gauge data was able to produce runoff with −12.2% and 0.71 for RB and NSE, respectively. The other three SRPs showed acceptable results in daily discharge simulation (NSE value between 0.42 and 0.49, and RB value between −23.3% and −31.2%). The generated flood map also agreed with the published information. In general, the SRPs, particularly the GSMaP, showed their ability to support rapid flood forecasting required for early warning of floods.


2005 ◽  
Vol 6 (2) ◽  
pp. 115-133 ◽  
Author(s):  
Jonathan J. Gourley ◽  
Baxter E. Vieux

Abstract A major goal in quantitative precipitation estimation and forecasting is the ability to provide accurate initial conditions for the purposes of hydrologic modeling. The accuracy of a streamflow prediction system is dependent upon how well the initial hydrometeorological states are characterized. A methodology is developed to objectively and quantitatively evaluate the skill of several different precipitation algorithms at the scale of application—a watershed. Thousands of hydrologic simulations are performed in an ensemble fashion, enabling an exploration of the model parameter space. Probabilistic statistics are then utilized to compare the relative skill of hydrologic simulations produced from the different precipitation inputs to the observed streamflow. The primary focus of this study is to demonstrate a methodology to evaluate precipitation algorithms that can be used to supplement traditional radar–rain gauge analyses. This approach is appropriate for the evaluation of precipitation estimates or forecasts that are intended to serve as inputs to hydrologic models.


2019 ◽  
Author(s):  
Gaoyun Shen ◽  
Nengcheng Chen ◽  
Wei Wang ◽  
Zeqiang Chen

Abstract. Accurate and consistent satellite-based precipitation estimates blended with rain gauge data are important for regional precipitation monitoring and hydrological applications, especially in regions with limited rain gauges. However, existing fusion precipitation estimates often have large uncertainties over mountainous areas with complex topography and sparse rain gauges, and the existing data blending algorithms are very bad at removing the day-by-day random errors. Therefore, the development of effective methods for high-accuracy precipitation estimates over complex terrain and on a daily scale is of vital importance for mountainous hydrological applications. This study aims to offer a novel approach for blending daily precipitation gauge data, gridded precipitation data and the Climate Hazards Group Infrared Precipitation (CHIRP, daily, 0.05°) satellite-derived precipitation estimates over the Jinsha River Basin for the period of June–July–August in 2016. This method is named the Wuhan University Satellite and Gauge precipitation Collaborated Correction (WHU-SGCC). The results show that the WHU-SGCC method is effective in precipitation bias adjustments from point to surface, which is evaluated by categorical indices. Moreover, the accuracy of the spatial distribution of the precipitation estimates derived from the WHU-SGCC method is related to the complexity of the topography. The validation also verifies that the proposed approach is effective in the detection of precipitation events that are less than 20 mm. This study indicates that the WHU-SGCC approach is a promising tool to monitor monsoon precipitation over Jinsha River Basin, the complicated mountainous terrain with sparse rain gauge data, considering the spatial correlation and the historical precipitation characteristics. The daily precipitation estimations at 0.05° resolution over Jinsha River Basin in summer 2016, derived from WHU-SGCC are available at the PANGAEA Data Publisher for Earth & Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.896615).


Sign in / Sign up

Export Citation Format

Share Document