Towards a Global Spectral Energy Budget for Internal Gravity Waves in the Ocean

2020 ◽  
Vol 50 (4) ◽  
pp. 935-944 ◽  
Author(s):  
Carsten Eden ◽  
Friederike Pollmann ◽  
Dirk Olbers

AbstractEnergy transfers by internal gravity wave–wave interactions in spectral space are diagnosed from numerical model simulations initialized with realizations of the Garrett–Munk spectrum in physical space and compared with the predictions of the so-called scattering integral or kinetic equation. Averaging the random phase of the initialization, the energy transfers by wave–wave interactions in the model agree well with the predictions of the kinetic equation for certain ranges of frequency and wavenumbers. This validation allows now, in principle, the use of the energy transfers predicted by the kinetic equation to design a global spectral energy budget for internal gravity waves in the ocean where divergences of energy transports in physical and spectral space balance forcing, dissipation, the energy transfers by the wave–wave interactions, or the rate of change of the spectral wave energy. First global estimates show indeed accumulation of the wave energy in a range of latitude ϕ consistent with tidal waves at frequency ωT propagating toward the latitudinal window where 2 < ωT/f(ϕ) < 3, as predicted by the kinetic equation.

1988 ◽  
Vol 190 ◽  
pp. 357-374 ◽  
Author(s):  
R. Grimshaw

Resonant interactions between triads of internal gravity waves propagating in a shear flow are considered for the case when the stratification and the background shear flow vary slowly with respect to typical wavelengths. If ωn, kn(n = 1, 2, 3) are the local frequencies and wavenumbers respectively then the resonance conditions are that ω1 + ω2 + ω3 = 0 and k1 + k2 + k3 = 0. If the medium is only weakly inhomogeneous, then there is a strong resonance and to leading order the resonance conditions are satisfied globally. The equations governing the wave amplitudes are then well known, and have been extensively discussed in the literature. However, if the medium is strongly inhomogeneous, then there is a weak resonance and the resonance conditions can only be satisfied locally on certain space-time resonance surfaces. The equations governing the wave amplitudes in this case are derived, and discussed briefly. Then the results are applied to a study of the hierarchy of wave interactions which can occur near a critical level, with the aim of determining to what extent a critical layer can reflect wave energy.


2007 ◽  
Vol 64 (5) ◽  
pp. 1509-1529 ◽  
Author(s):  
Nikolaos A. Bakas ◽  
Petros J. Ioannou

Abstract In this paper, the emission of internal gravity waves from a local westerly shear layer is studied. Thermal and/or vorticity forcing of the shear layer with a wide range of frequencies and scales can lead to strong emission of gravity waves in the region exterior to the shear layer. The shear flow not only passively filters and refracts the emitted wave spectrum, but also actively participates in the gravity wave emission in conjunction with the distributed forcing. This interaction leads to enhanced radiated momentum fluxes but more importantly to enhanced gravity wave energy fluxes. This enhanced emission power can be traced to the nonnormal growth of the perturbations in the shear region, that is, to the transfer of the kinetic energy of the mean shear flow to the emitted gravity waves. The emitted wave energy flux increases with shear and can become as large as 30 times greater than the corresponding flux emitted in the absence of a localized shear region. Waves that have horizontal wavelengths larger than the depth of the shear layer radiate easterly momentum away, whereas the shorter waves are trapped in the shear region and deposit their momentum at their critical levels. The observed spectrum, as well as the physical mechanisms influencing the spectrum such as wave interference and Doppler shifting effects, is discussed. While for large Richardson numbers there is equipartition of momentum among a wide range of frequencies, most of the energy is found to be carried by waves having vertical wavelengths in a narrow band around the value of twice the depth of the region. It is shown that the waves that are emitted from the shear region have vertical wavelengths of the size of the shear region.


1997 ◽  
Vol 15 (12) ◽  
pp. 1570-1580 ◽  
Author(s):  
N. M. Gavrilov

Abstract. The mechanism of generation of internal gravity waves (IGW) by mesoscale turbulence in the troposphere is considered. The equations that describe the generation of waves by hydrodynamic sources of momentum, heat and mass are derived. Calculations of amplitudes, wave energy fluxes, turbulent viscosities, and accelerations of the mean flow caused by IGWs generated in the troposphere are made. A comparison of different mechanisms of turbulence production in the atmosphere by IGWs shows that the nonlinear destruction of a primary IGW into a spectrum of secondary waves may provide additional dissipation of nonsaturated stable waves. The mean wind increases both the effectiveness of generation and dissipation of IGWs propagating in the direction of the wind. Competition of both effects may lead to the dominance of IGWs propagating upstream at long distances from tropospheric wave sources, and to the formation of eastward wave accelerations in summer and westward accelerations in winter near the mesopause.


2014 ◽  
Vol 44 (8) ◽  
pp. 2093-2106 ◽  
Author(s):  
Carsten Eden ◽  
Dirk Olbers

Abstract The recently proposed Internal Wave Dissipation, Energy and Mixing (IDEMIX) model, describing the propagation and dissipation of internal gravity waves in the ocean, is extended. Compartments describing the energy contained in the internal tides and the near-inertial waves at low, vertical wavenumber are added to a compartment of the wave continuum at higher wavenumbers. Conservation equations for each compartment are derived based on integrated versions of the radiative transfer equation of weakly interacting waves. The compartments interact with each other by the scattering of tidal energy to the wave continuum by triad wave–wave interactions, which are strongly enhanced equatorward of 28° due to parametric subharmonic instability of the tide and by scattering to the continuum of both tidal and near-inertial wave energy over rough topography and at continental margins. Global numerical simulations of the resulting model using observed stratification, forcing functions, and bottom topography yield good agreement with available observations.


1969 ◽  
Vol 36 (4) ◽  
pp. 785-803 ◽  
Author(s):  
Francis P. Bretherton

A train of internal gravity waves in a stratified liquid exerts a stress on the liquid and induces changes in the mean motion of second order in the wave amplitude. In those circumstances in which the concept of a slowly varying quasi-sinusoidal wave train is consistent, the mean velocity is almost horizontal and is determined to a first approximation irrespective of the vertical forces exerted by the waves. The sum of the mean flow kinetic energy and the wave energy is then conserved. The circulation around a horizontal circuit moving with the mean velocity is increased in the presence of waves according to a simple formula. The flow pattern is obtained around two- and three-dimensional wave packets propagating into a liquid at rest and the results are generalized for any basic state of motion in which the internal Froude number is small. Momentum can be associated with a wave packet equal to the horizontal wave-number times the wave energy divided by the intrinsic frequency.


2013 ◽  
Vol 43 (8) ◽  
pp. 1759-1779 ◽  
Author(s):  
Dirk Olbers ◽  
Carsten Eden

Abstract An energetically consistent model for the diapycnal diffusivity induced by breaking of internal gravity waves is proposed and tested in local and global settings. The model [Internal Wave Dissipation, Energy and Mixing (IDEMIX)] is based on the spectral radiation balance of the wave field, reduced by integration over the wavenumber space, which yields a set of balances for energy density variables in physical space. A further simplification results in a single partial differential equation for the total energy density of the wave field. The flux of energy to high vertical wavenumbers is parameterized by a functional derived from the wave–wave scattering integral of resonant wave triad interactions, which also forms the basis for estimates of dissipation rates and related diffusivities of ADCP and hydrography fine-structure data. In the current version of IDEMIX, the wave energy is forced by wind-driven near-inertial motions and baroclinic tides, radiating waves from the respective boundary layers at the surface and the bottom into the ocean interior. The model predicts plausible magnitudes and three-dimensional structures of internal wave energy, dissipation rates, and diapycnal diffusivities in rough agreement to observational estimates. IDEMIX is ready for use as a mixing module in ocean circulation models and can be extended with more spectral components.


2020 ◽  
Author(s):  
Manita Chouksey

&lt;p&gt;Geophysical flows such as the atmosphere and the ocean are characterized by rotation and stratification, which together give rise to two dominant motions: the slow balanced and the fast unbalanced motions. The interaction between the balanced and unbalanced motions and the energy transfers between them impact the energy and momentum cycle of the flow, and is therefore crucial to understand the underlying energetics of the atmosphere and the ocean. Balanced motions, for instance mesoscale eddies, can transfer their energy to unbalanced motions, such as internal gravity waves, by spontaneous loss of balance amongst other processes. The exact mechanism of wave generation, however, remain less understood and is hindered to an extent by the challenge of separating the flow field into balanced and unbalanced motions.&lt;/p&gt;&lt;p&gt;This separation is achieved using two different balancing procedures in an identical model setup and assess the differences in the obtained balanced state and the resultant energy transfer to unbalanced motions. The first procedure we implement is a non-linear initialisation procedure based on Machenhauer (1977) but extended to higher orders in Rossby number. The second procedure implemented is the optimal potential vorticity balance to achieve the balanced state. The results show that the numerics of the model affect the obtained balanced state from the two procedures, and thus the residual signal which we interpret as the unbalanced motions, i.e. internal gravity waves.&amp;#160; A further complication is the presence of slaved modes, which appear along the unbalanced motions but are tied to the balanced motions, for which we need to extend the separation to higher orders in Rossby number. Further, we assess the energy transfers between balanced and unbalanced motions in experiments with different Rossby numbers and for different orders in Rossby number. We find that it is crucial to consider the effect of the numerics in models and make a suitable choice of the balancing procedure, as well as diagnose the unbalanced motions at higher orders to precisely detect the unbalanced wave signal.&lt;/p&gt;


2019 ◽  
Vol 49 (1) ◽  
pp. 291-308 ◽  
Author(s):  
Carsten Eden ◽  
Manita Chouksey ◽  
Dirk Olbers

AbstractMixed triad wave–wave interactions between Rossby and gravity waves are analytically derived using the kinetic equation for models of different complexity. Two examples are considered: initially vanishing linear gravity wave energy in the presence of a fully developed Rossby wave field and the reversed case of initially vanishing linear Rossby wave energy in the presence of a realistic gravity wave field. The kinetic equation in both cases is numerically evaluated, for which energy is conserved within numerical precision. The results are validated by a corresponding ensemble of numerical model simulations supporting the validity of the weak-interaction assumption necessary to derive the kinetic equation. Since they are generated by nonresonant interactions only, the energy transfers toward the respective linear wave mode with vanishing energy are small in both cases. The total generation of energy of the linear gravity wave mode in the first case scales to leading order as the square of the Rossby number in agreement with independent estimates from laboratory experiments, although a part of the linear gravity wave mode is slaved to the Rossby wave mode without wavelike temporal behavior.


1979 ◽  
Vol 93 (3) ◽  
pp. 401-412 ◽  
Author(s):  
S. Leibovich

The dispersion relations for infinitesimal internal gravity waves (A) and axisymmetric waves in swirling streams (B) are considered. In both cases the mainstream may be sheared and density stratified in the transverse (vertical in case A, radial in case B) direction. The following results are proved for either case: If the maximum speed Wmax (or minimum speed Wmin) (in a meridian plane in case B) of the mainstream occurs at an interior point in the fluid, then the phase speed of any mode takes all values from the Wmax (or Wmin) to +∞ ( —∞) as the overall Richardson number λ2 varies from 0 to ∞. If Wmax(Wmin) is attained at a boundary point with finite rate of strain, there is a positive non-zero critical Richardson number below which one or both branches of the dispersion relation terminate. These results employ variational methods and correct erroneous results concerning problem B stated in Chandrasekhar's treatise on hydrodynamic stability. Furthermore, bounds are given on the group velocity for both branches of the dispersion relation. From these bounds it is shown that in the absence of reversals of the mainstream (Wmin > 0) upstream propagation of wave energy is impossible whenever upstream propagation of constant phase surfaces is impossible.


2012 ◽  
Vol 42 (5) ◽  
pp. 669-691 ◽  
Author(s):  
Yuri V. Lvov ◽  
Kurt L. Polzin ◽  
Naoto Yokoyama

Abstract The spectral energy density of the internal waves in the open ocean is considered. The Garrett and Munk spectrum and the resonant kinetic equation are used as the main tools of the study. Evaluations of a resonant kinetic equation that suggest the slow time evolution of the Garrett and Munk spectrum is not in fact slow are reported. Instead, nonlinear transfers lead to evolution time scales that are smaller than one wave period at high vertical wavenumber. Such values of the transfer rates are inconsistent with the viewpoint expressed in papers by C. H. McComas and P. Müller, and by P. Müller et al., which regards the Garrett and Munk spectrum as an approximate stationary state of the resonant kinetic equation. It also puts the self-consistency of a resonant kinetic equation at a serious risk. The possible reasons for and resolutions of this paradox are explored. Inclusion of near-resonant interactions decreases the rate at which the spectrum evolves. Consequently, this inclusion shows a tendency of improving of self-consistency of the kinetic equation approach.


Sign in / Sign up

Export Citation Format

Share Document