Rossby and Yanai Modes of Tropical Instability Waves in the Equatorial Pacific Ocean and a Diagnostic Model for Surface Currents

2020 ◽  
Vol 50 (10) ◽  
pp. 3009-3024
Author(s):  
Minyang Wang ◽  
Shang-Ping Xie ◽  
Samuel S. P. Shen ◽  
Yan Du

AbstractMesoscale activities over the equatorial Pacific Ocean are dominated by the Rossby and Yanai modes of tropical instability waves (TIWs). The TIW-induced surface velocity has not been accurately estimated in previous diagnostic models, especially for the meridional component across the equator. This study develops a diagnostic model that retains the acceleration terms to estimate the TIW surface velocity from the satellite-observed sea surface height. Validated against moored observations, the velocity across the equator is accurately estimated for the first time, much improved from existing products. The results identify the Rossby- and Yanai-mode TIWs as the northwest–southeastward (NW–SE) velocity oscillations north of the equator and the northeast–southwestward (NE–SW) velocity oscillations on the equator, respectively. Barotropic instability is the dominant energy source of the two TIW modes. The NE–SW velocity oscillation of the Yanai mode is associated with the counterclockwise shear of the South Equatorial Current on the equator. The two TIW modes induce different sea surface temperature patterns and vertical motions. Accurate estimates of TIW velocity are important for studying equatorial ocean dynamics and climate variability in the tropical Pacific Ocean.

2019 ◽  
Vol 46 (21) ◽  
pp. 12270-12278 ◽  
Author(s):  
Chuanyu Liu ◽  
Liyuan Fang ◽  
Armin Köhl ◽  
Zhiyu Liu ◽  
William D. Smyth ◽  
...  

2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Marlin C Wattimena ◽  
Agus S Atmadipoera ◽  
Mulia Purba ◽  
Ariane Koch-Larrouy

The secondary entry portal of the Indonesian Throughflow (ITF) from the Pacific to Indian Oceans is considered to be via the Halmahera Sea (HS). However, few ITF studies have been done within the passage. This motivated the Internal Tides and Mixing in the Indonesian Througflow (INDOMIX) program to conduct direct measurements of currents and its variability across the eastern path of the ITF. This study focused on the intra-seasonal variability of near-bottom current in HS (129°E, 0°S), its origin and correlation with surface zonal winds and sea surface height over the equatorial Pacific Ocean. The result showed a strong northwestward mean flow with velocity exceeding 40 cm/s, which represented the current-following topography with the northwest orientation. Meridional current component was much stronger than the zonal component. The energy of power spectral density (PSD) of the current peaked on 14-days and 27-days periods. The first period was presumably related to the tidal oscillation, but the latter may be associated with surface winds perturbation. Furthermore, cross-PSD revealed a significant coherency between the observed currents and the surface zonal winds in the central equatorial Pacific zonal winds (180°E-160°W), which corroborates westward propagation of intra-seasonal sea surface height signals along the 5°S with its mean phase speeds of 50 cm/s, depicting the low-latitude westward Rossby waves on intra-seasonal band. Keywords: current, equatorial Pacific Ocean,  zonal winds, sea surface height, Halmahera Sea


2007 ◽  
Vol 20 (11) ◽  
pp. 2643-2658 ◽  
Author(s):  
Shayne McGregor ◽  
Neil J. Holbrook ◽  
Scott B. Power

Abstract The Australian Bureau of Meteorology Research Centre CGCM and a linear first baroclinic-mode ocean shallow-water model (SWM) are used to investigate ocean dynamic forcing mechanisms of the equatorial Pacific Ocean interdecadal sea surface temperature (SST) variability. An EOF analysis of the 13-yr low-pass Butterworth-filtered SST anomalies from a century-time-scale CGCM simulation reveals an SST anomaly spatial pattern and time variability consistent with the interdecadal Pacific oscillation. Results from an SWM simulation forced with wind stresses from the CGCM simulation are shown to compare well with the CGCM, and as such the SWM is then used to investigate the roles of “uncoupled” equatorial wind stress forcing, off-equatorial wind stress forcing (OffEqWF), and Rossby wave reflection at the western Pacific Ocean boundary, on the decadal equatorial thermocline depth anomalies. Equatorial Pacific wind stresses are shown to explain a large proportion of the overall variance in the equatorial thermocline depth anomalies. However, OffEqWF beyond 12.5° latitude produces an interdecadal signature in the Niño-4 (Niño-3) region that explains approximately 10% (1.5%) of the filtered control simulation variance. Rossby wave reflection at the western Pacific boundary is shown to underpin the OffEqWF contribution to these equatorial anomalies. The implications of this result for the predictability of the decadal variations of thermocline depth are investigated with results showing that OffEqWF generates an equatorial response in the Niño-3 region up to 3 yr after the wind stress forcing is switched off. Further, a statistically significant correlation is found between thermocline depth anomalies in the off-equatorial zone and the Niño-3 region, with the Niño-3 region lagging by approximately 2 yr. The authors conclude that there is potential predictability of the OffEqWF equatorial thermocline depth anomalies with lead times of up to 3 yr when taking into account the amplitudes and locations of off-equatorial region Rossby waves.


2007 ◽  
Vol 37 (5) ◽  
pp. 1163-1176 ◽  
Author(s):  
Chuan Jiang Huang ◽  
Wei Wang ◽  
Rui Xin Huang

Abstract The circulation in the equatorial Pacific Ocean is studied in a series of numerical experiments based on an isopycnal coordinate model. The model is subject to monthly mean climatology of wind stress and surface thermohaline forcing. In response to decadal variability in the diapycnal mixing coefficient, sea surface temperature and other properties of the circulation system oscillate periodically. The strongest sea surface temperature anomaly appears in the geographic location of Niño-3 region with the amplitude on the order of 0.5°C, if the model is subject to a 30-yr sinusoidal oscillation in diapycnal mixing coefficient that varies between 0.03 × 10−4 and 0.27 × 10−4 m2 s−1. Changes in diapycnal mixing coefficient of this amplitude are within the bulk range consistent with the external mechanical energy input in the global ocean, especially when considering the great changes of tropical cyclones during the past decades. Thus, time-varying diapycnal mixing associated with changes in wind energy input into the ocean may play a nonnegligible role in decadal climate variability in the equatorial circulation and climate.


2010 ◽  
Vol 40 (2) ◽  
pp. 381-393 ◽  
Author(s):  
Jaclyn N. Brown ◽  
J. Stuart Godfrey ◽  
Susan E. Wijffels

Abstract In a numerical model of the equatorial Pacific Ocean, the ∼20-day period tropical instability waves, excited in the eastern half of the domain, are found to damp the strong zonal mean currents. The waves generate large, nonlinear, advection terms in the momentum balance, change the vorticity balance, and thus modulate the low-frequency state. The authors explore whether the effect of tropical instability waves on the background flow can instead be adequately parameterized by a constant-coefficient Laplacian friction scheme. On annual mean, a Laplacian friction coefficient that varies in space is required, for the coefficient is twice as large along the equator and a few degrees more to the north than elsewhere. In addition, wave activity varies in time. During active phases, such as the second half of the year and during La Niñas, the activity increases, which would require the Laplacian coefficient of friction to be at least twice as strong as during the inactive phases. Thus, a more sophisticated damping parameterization than simple Laplacian friction is required in ocean models that do not explicitly resolve tropical instability waves.


Sign in / Sign up

Export Citation Format

Share Document