scholarly journals The Arctic and Subarctic Ocean Flux of Potential Vorticity and the Arctic Ocean Circulation*

2005 ◽  
Vol 35 (12) ◽  
pp. 2387-2407 ◽  
Author(s):  
Jiayan Yang

Abstract According to observations, the Arctic Ocean circulation beneath a shallow thermocline can be schematized by cyclonic rim currents along shelves and over ridges. In each deep basin, the circulation is also believed to be cyclonic. This circulation pattern has been used as an important benchmark for validating Arctic Ocean models. However, modeling this grand circulation pattern with some of the most sophisticated ocean–ice models has been often difficult. The most puzzling and thus perhaps the most interesting finding from the Arctic Ocean Model Intercomparison Project (AOMIP), an international consortium that runs 14 Arctic Ocean models by using the identical forcing fields, is that its model results can be grouped into two nearly exact opposite patterns. While some models produce cyclonic circulation patterns similar to observations, others do the opposite. This study examines what could be possibly responsible for such strange inconsistency. It is found here that the flux of potential vorticity (PV) from the subarctic oceans strongly controls the circulation directions. For a semienclosed basin like the Arctic, the PV integral over the whole basin yields a balance between the net lateral PV inflow and the PV dissipation along the boundary. When an isopycnal layer receives a net positive PV through inflow/outflow, the circulation becomes cyclonic so that friction can generate a flux of negative PV to satisfy the integral balance. For simplicity, a barotropic ocean model is used in this paper but its application to the 3D models will be discussed. In the first set of experiments, the model with a realistic Arctic bathymetry is forced by observed inflows and outflows. In this case, there is a net positive PV inflow to the basin, due to the fact that inflow layer is thinner than that of outflow. The model produces a circulation field that is remarkably similar to the one from observations. In the second experiment, the model bathymetry at Fram Strait is modified so that the same inflows and outflows of water masses lead to a net negative PV flux into the Arctic. The circulation is reversed and becomes nearly the opposite of the first experiment. In the third experiment, the net PV flux is made to be zero by modifying again the sill depth at Fram Strait. The circulation becomes two gyres, a cyclonic one in the Eurasian Basin and an anticyclonic one in the Canada Basin. To elucidate the control of the PV integral, a second set of model experiments is conducted by using an idealized Arctic bathymetry so that the PV dynamics can be better explained without the complication of rough topography. The results from five additional experiments that used the idealized topography will be discussed. While the model used in this study is one layer, the same PV-integral constraint can be applied to any isopycnal layer in a three-dimensional model. Variables that affect the PV fluxes to this density layer at any inflow/outflow channel, such as layer thickness and water volume flux, can affect the circulation pattern. The relevance to 3D models is discussed in this paper.

2001 ◽  
Vol 33 ◽  
pp. 567-576 ◽  
Author(s):  
Ye. Aksenov ◽  
A.C. Coward

AbstractTo investigate the Arctic Ocean Circulation, results from a high-resolution fully global ocean model have been analyzed. The results come from two runs of the Ocean Circulation and Climate Advanced Modelling project (OCCAM) model, developed and run by the Southampton Oceanography Centre, at 1/4° × 1/4° and 1/8° × 1/8° resolution. The model is based on the Bryan-Semtner-Cox model and has 36 vertical levels. Enhancements include a free surface, an improved advection scheme and an improved treatment of the surface fresh-water flux. The model is forced with a monthly European Centre for Medium-range Weather Forecasts wind-stress climatology. It reproduces many of the fine-scale features found in the Arctic Ocean. The analysis concentrates on several of the key features, including the highly energetic eddy system in the western part of the Beaufort Sea, East Greenland West and Spitsbergen Currents and the detailed structure of the marginal currents along the Siberian and Canadian coasts. Much of the paper is focused on the water transport through the Bering and Fram Straits and through the Canadian Archipelago. Comparisons of the model net fluxes through the straits against observations are presented. The analyses of the results demonstrate the ability of the fine-resolution model to simulate features such as small-scale eddies and jets, which have some agreement with the limited observations available.


2014 ◽  
Vol 31 (1) ◽  
pp. 233-245 ◽  
Author(s):  
Wen-Yu Huang ◽  
Bin Wang ◽  
Li-Juan Li ◽  
Yong-Qiang Yu

Abstract A known issue of the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics Climate Ocean Model, version 2 (LICOM2, the standard version) is the use of an artificial island in the Arctic Ocean. The computational instability in the polar region seriously influences the model performance in terms of the Arctic circulation. The above-mentioned instability was originally attributed to the converging zonal grids in the polar region. However, this study finds that better computational stability could be achieved in an improved version of LICOM2 (i.e., LICOM2_imp) after four improvements on implementations of the vertical mixing, mesoscale eddy parameterization, and bottom drag schemes. LICOM2_imp is then able to reduce the aforesaid artificial island to a point (i.e., the North Pole). Two experiments of 650-yr integration by LICOM2_imp are carried out using different bathymetries: Exp IMPV0 with the artificial island (88°–90°N) and IMPV1 with only the single pole. The focus of this paper is on the Arctic circulation. Exp IMPV1 gives a more reasonable distribution of salinity and temperature in the Arctic Ocean, a more accurate location of the center of the Beaufort Gyre, and a better net volume flux of the transpolar drift. With more realistic bathymetry in the Arctic Ocean, the biases of net volume fluxes across the Fram Strait, Barents Sea Opening, and Barents Sea Exit are reduced from 1.71 to 1.56, from 0.23 to 0.10, and from 0.71 to 0.45 Sv (1 Sv ≡ 106 m3 s−1), respectively, closer to the observations. The large biases of the net volume fluxes at the Fram Strait in both experiments may be attributed to the closed Nares Strait and other straits/channels in the Canadian Arctic Archipelago.


arktos ◽  
2021 ◽  
Author(s):  
Akil Hossain ◽  
Gregor Knorr ◽  
Wilfried Jokat ◽  
Gerrit Lohmann

AbstractThe tectonic opening of the Fram Strait (FS) was critical to the water exchange between the Atlantic Ocean and the Arctic Ocean, and caused the transition from a restricted to a ventilated Arctic Ocean during early Miocene. If and how the water exchange between the Arctic Ocean and the North Atlantic influenced the global current system is still disputed. We apply a fully coupled atmosphere–ocean–sea-ice model to investigate stratification and ocean circulation in the Arctic Ocean in response to the opening of the FS during early-to-middle Miocene. Progressive widening of the FS gateway in our simulation causes a moderate warming, while salinity conditions in the Nordic Seas remain similar. On the contrary, with increasing FS width, Arctic temperatures remain unchanged and salinity changes appear to steadily become stronger. For a sill depth of ~ 1500 m, we achieve ventilation of the Arctic Ocean due to enhanced import of saline Atlantic water through an FS width of ~ 105 km. Moreover, at this width and depth, we detect a modern-like three-layer stratification in the Arctic Ocean. The exchange flow through FS is characterized by vertical separation of a low-salinity cold outflow from the Arctic Ocean confined to a thin upper layer, an intermediate saline inflow from the Atlantic Ocean below, and a cold bottom Arctic outflow. Using a significantly shallower and narrower FS during the early Miocene, our study suggests that the ventilation mechanisms and stratification in the Arctic Ocean are comparable to the present-day characteristics.


2011 ◽  
Vol 8 (6) ◽  
pp. 2313-2376 ◽  
Author(s):  
B. Rudels

Abstract. The first hydrographic data from the Arctic Ocean, the section from the Laptev Sea to the passage between Greenland and Svalbard obtained by Nansen on the drift by Fram 1893–1896, aptly illustrate the main features of Arctic Ocean oceanography and indicate possible processes active in transforming the water masses in the Arctic Ocean. Many, perhaps most, of these processes were identified already by Nansen, who put his mark on almost all subsequent research in the Arctic Ocean. Here we shall revisit some key questions and follow how our understanding has evolved from the early 20th century to present. What questions, if any, can now be regarded as solved and which remain still open? Five different but connected topics will be discussed: (1) The low salinity surface layer and the storage and export of freshwater. (2) The vertical heat transfer from the Atlantic water to sea ice and to the atmosphere. (3) The circulation and mixing of the two Atlantic inflow branches. (4) The formation and circulation of deep and bottom waters in the Arctic Ocean. (5) The exchanges through Fram Strait. Foci will be on the potential effects of increased freshwater input and reduced sea ice export on the freshwater storage and residence time in the Arctic Ocean, on the deep waters of the Makarov Basin and on the circulation and relative importance of the two inflows, over the Barents Sea and through Fram Strait, for the distribution of heat in the intermediate layers of the Arctic Ocean.


2018 ◽  
Author(s):  
Maren Elisabeth Richter ◽  
Wilken-Jon von Appen ◽  
Claudia Wekerle

Abstract. Warm Atlantic Water (AW) flows around the Nordic Seas in a cyclonic boundary current loop. Some AW enters the Arctic Ocean where it is transformed to Arctic Atlantic Water (AAW) before exiting through Fram Strait. There the AAW is joined by recirculating AW. Here we present the first summer synoptic study targeted at resolving this confluence in Fram Strait which forms the East Greenland Current (EGC). Absolute geostrophic velocities and hydrography from observations in 2016, including four sections crossing the east Greenland shelfbreak, are compared to output from an eddy-resolving configuration of the sea–ice ocean model FESOM. Far offshore (120 km at 80.8° N) AW warmer than 2 °C is found in northern Fram Strait. The Arctic Ocean outflow there is broad and barotropic, but gets narrower and more baroclinic toward the south as recirculating AW increases the cross-shelfbreak density gradient. This barotropic to baroclinic transition appears to form the well-known EGC boundary current flowing along the shelfbreak further south where it has been previously described. In this realization, between 80.2° N and 76.5° N, the southward transport along the east Greenland shelfbreak increases from roughly 1 Sv to about 4 Sv and the warm water composition, defined as the fraction of AW of the sum of AW and AAW (AW/(AW + AAW)), changes from 19 ± 8 % to 80 ± 3 %. Consequently, in southern Fram Strait, AW can propagate into Norske Trough on the east Greenland shelf and reach the large marine terminating glaciers there. High instantaneous variability observed in both the synoptic data and the model output is attributed to eddies, the representation of which is crucial as they mediate the westward transport of AW in the recirculation and thus structure the confluence forming the EGC.


Ocean Science ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 261-286 ◽  
Author(s):  
B. Rudels

Abstract. The first hydrographic data from the Arctic Ocean, the section from the Laptev Sea to the passage between Greenland and Svalbard obtained by Nansen on his drift with Fram 1893–1896, aptly illustrate the main features of Arctic Ocean oceanography and indicate possible processes active in transforming the water masses in the Arctic Ocean. Many, perhaps most, processes were identified already by Nansen, who put his mark on almost all subsequent research in the Arctic. Here we shall revisit some key questions and follow how our understanding has evolved from the early 20th century to present. What questions, if any, can now be regarded as solved and which remain still open? Five different but connected topics will be discussed: (1) The low salinity surface layer and the storage and export of freshwater. (2) The vertical heat transfer from the Atlantic water to sea ice and to the atmosphere. (3) The circulation and mixing of the two Atlantic inflow branches. (4) The formation and circulation of deep and bottom waters in the Arctic Ocean. (5) The exchanges through Fram Strait. Foci will be on the potential effects of increased freshwater input and reduced sea ice export on the freshwater storage and residence time in the Arctic Ocean, on the deep waters of the Makarov Basin, and on the circulation and relative importance of the two inflows, over the Barents Sea and through Fram Strait, for the distribution of heat in the intermediate layers of the Arctic Ocean.


Sign in / Sign up

Export Citation Format

Share Document