scholarly journals Satellite-Derived Surface Current Divergence in Relation to Tropical Atlantic SST and Wind

2007 ◽  
Vol 37 (5) ◽  
pp. 1357-1375 ◽  
Author(s):  
Robert W. Helber ◽  
Robert H. Weisberg ◽  
Fabrice Bonjean ◽  
Eric S. Johnson ◽  
Gary S. E. Lagerloef

Abstract The relationships between tropical Atlantic Ocean surface currents and horizontal (mass) divergence, sea surface temperature (SST), and winds on monthly-to-annual time scales are described for the time period from 1993 through 2003. Surface horizontal mass divergence (upwelling) is calculated using surface currents estimated from satellite sea surface height, surface vector wind, and SST data with a quasi-linear, steady-state model. Geostrophic and Ekman dynamical contributions are considered. The satellite-derived surface currents match climatological drifter and ship-drift currents well, and divergence patterns are consistent with the annual north–south movement of the intertropical convergence zone (ITCZ) and equatorial cold tongue evolution. While the zonal velocity component is strongest, the meridional velocity component controls divergence along the equator and to the north beneath the ITCZ. Zonal velocity divergence is weaker but nonnegligible. Along the equator, a strong divergence (upwelling) season in the central/eastern equatorial Atlantic peaks in May while equatorial SST is cooling within the cold tongue. In addition, a secondary weaker and shorter equatorial divergence occurs in November also coincident with a slight SST cooling. The vertical transport at 30-m depth, averaged across the equatorial Atlantic Ocean between 2°S and 2°N for the record length, is 15(±6) × 106 m3 s−1. Results are consistent with what is known about equatorial upwelling and cold tongue evolution and establish a new method for observing the tropical upper ocean relative to geostrophic and Ekman dynamics at spatial and temporal coverage characteristic of satellite-based observations.

2021 ◽  
Author(s):  
Fanny Chenillat ◽  
Julien Jouanno ◽  
Serena Illig ◽  
Founi Mesmin Awo ◽  
Gaël Alory ◽  
...  

<div><span>Surface chlorophyll-<em>a </em>concentration (CHL-<em>a</em>) remotely observed by satellite shows a marked seasonal and interannual variability in the Tropical Atlantic, with potential consequences on the marine trophic web. Seasonal and interannual CHL-<em>a </em>variability peaks in boreal summer and shows maxima in the equatorial Atlantic region at 10˚W, spreading from 0 to 30˚W. In this study, we analyze how the remotely-sensed surface CHL-<em>a </em>responds to the leading climate modes affecting the interannual equatorial Atlantic variability over the 1998-2018 period, namely the Atlantic Zonal Mode (AZM) and the North Tropical Atlantic Mode (NTA, also known as the Atlantic Meridional Mode). The AZM is characterized by anomalous warming (or cooling) along the eastern equatorial band. In contrast, the NTA is characterized by an interhemispheric pattern of the sea surface temperature (SST), with anomalous warm (cold) conditions in the north tropical Atlantic region and weak negative (positive) SST anomalies south of the equator. We show that both modes significantly drive the interannual Tropical Atlantic surface CHL-<em>a </em>variability, with different timings and contrasted modulation on the eastern and western portions of the cold tongue area. Our results also reveal that the NTA slightly dominates (40%) the summer tropical Atlantic interannual variability over the last two decades, most probably because of a positive phase of the Atlantic multidecadal oscillation. For each mode of variability, we analyze an event characterized by an extreme negative sea surface temperature (SST) anomaly in the Atlantic equatorial band. Both modes are associated with a positive CHL-<em>a </em>anomaly at the equator. In 2002, a negative phase of the NTA led to cold SST anomaly and high positive CHL-<em>a </em>in the western portion of the cold tongue, peaking in June-July and lasting until the end of the year. In contrast, in 2005, a negative phase of the AZM drove cool temperature and positive CHL-<em>a </em>in the eastern equatorial band, with a peak in May-June and almost no signature after August. Such contrasted year to year conditions can affect the marine ecosystem by changing temporal and spatial trophic niches for pelagic predators, thus inducing significant variations for ecosystem functioning and fisheries.</span></div>


2009 ◽  
Vol 39 (6) ◽  
pp. 1416-1431 ◽  
Author(s):  
Frédéric Marin ◽  
Guy Caniaux ◽  
Hervé Giordani ◽  
Bernard Bourlès ◽  
Yves Gouriou ◽  
...  

Abstract A comparison of June 2005 and June 2006 sea surface temperatures in the eastern equatorial Atlantic exhibits large variability in the properties of the equatorial cold tongue, with far colder temperatures in 2005 than in 2006. This difference is found to result mainly from a time shift in the development of the cold tongue between the two years. Easterlies were observed to be stronger in the western tropical Atlantic in April–May 2005 than in April–May 2006, and these winds favorably preconditioned oceanic subsurface conditions in the eastern Atlantic. However, it is also shown that a stronger than usual intraseasonal intensification of the southeastern trades was responsible for the rapid and early intense cooling of the sea surface temperatures in mid-May 2005 over a broad region extending from 20°W to the African coast and from 6°S to the equator. This particular event underscores the ability of local intraseasonal wind stress variability in the Gulf of Guinea to initiate the cold tongue season and thus to dramatically impact the SST in the eastern equatorial Atlantic. Such intraseasonal wind intensifications are of potential importance for year-to-year variability in the onset of the African monsoon.


Ocean Science ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 849-869 ◽  
Author(s):  
Gaëlle Herbert ◽  
Bernard Bourlès

Abstract. The impact of boreal spring intraseasonal wind bursts on sea surface temperature variability in the eastern tropical Atlantic Ocean in 2005 and 2006 is investigated using numerical simulation and observations. We especially focus on the coastal region east of 5° E and between the Equator and 7° S that has not been studied in detail so far. For both years, the southerly wind anomalies induced cooling episodes through (i) upwelling processes, (ii) vertical mixing due to the vertical shear of the current, and for some particular events (iii) a decrease in incoming surface shortwave radiation. The strength of the cooling episodes was modulated by subsurface conditions affected by the arrival of Kelvin waves from the west influencing the depth of the thermocline. Once impinging the eastern boundary, the Kelvin waves excited westward-propagating Rossby waves, which combined with the effect of enhanced westward surface currents contributed to the westward extension of the cold water. A particularly strong wind event occurred in mid-May 2005 and caused an anomalous strong cooling off Cape Lopez and in the whole eastern tropical Atlantic Ocean. From the analysis of oceanic and atmospheric conditions during this particular event, it appears that anomalously strong boreal spring wind strengthening associated with anomalously strong Hadley cell activity prematurely triggered the onset of coastal rainfall in the northern Gulf of Guinea, making it the earliest over the 1998–2008 period. No similar atmospheric conditions were observed in May over the 1998–2008 period. It is also found that the anomalous oceanic and atmospheric conditions associated with the event exerted a strong influence on rainfall off northeast Brazil. This study highlights the different processes through which the wind power from the South Atlantic is brought to the ocean in the Gulf of Guinea and emphasizes the need to further document and monitor the South Atlantic region.


2020 ◽  
Vol 47 (20) ◽  
Author(s):  
Arthur Prigent ◽  
Rodrigue Anicet Imbol Koungue ◽  
Joke F. Lübbecke ◽  
Peter Brandt ◽  
Mojib Latif

2021 ◽  
Author(s):  
Arthur Prigent ◽  
Rodrigue Anicet Imbol Koungue ◽  
Joke Lübbecke ◽  
Peter Brandt ◽  
Jan Harlaß ◽  
...  

<p>Since 2000, a substantial weakening in the equatorial and southeastern tropical Atlantic sea surface temperature (SST) variability is observed. Observations and reanalysis products reveal, for example, that relative to 1982–1999, the March‐April‐May SST variability in the Angola‐Benguela area (ABA) has decreased by more than 30%. Both equatorial remote forcing and local forcing are known to play an important role in driving SST variability in the ABA. Here we show that compared to 1982–1999, since 2000, equatorial remote forcing had less influence on ABA SSTs, whereas local forcing has become more important. In particular, the robust correlation between the equatorial zonal wind stress and the ABA SSTs has substantially weakened, suggesting less influence of Kelvin waves on ABA SSTs. Moreover, the strong correlation linking the South Atlantic Anticyclone and the ABA SSTs has reduced. Multidecadal surface warming of the ABA could also have played a role in weakening the interannual SST variability.</p><p>To investigate future changes in tropical Atlantic SST variability, an ensemble of nested high-resolution coupled model simulations under the global warming scenario RCP8.5 is analyzed. SST variability in both the ABA and equatorial cold tongue is found to decrease along with reduced western equatorial Atlantic zonal wind variability.  </p>


2021 ◽  
Author(s):  
Koffi Worou ◽  
Hugues Goosse ◽  
Thierry Fichefet

<p>Much of the rainfall variability in the Guinean coast area during the boreal summer is driven by the sea surface temperature (SST) variations in the eastern equatorial Atlantic, amplified by land-atmosphere interactions. This oceanic region corresponds to the center of action of the Atlantic Equatorial mode, also termed Atlantic Niño (ATL3), which is the leading SST mode of variability in the tropical Atlantic basin. In years of positive ATL3, above normal SST conditions in the ATL3 area weaken the sea level pressure gradient between the West African lands and the ocean, which in turn reduces the monsoon flow penetration into Sahel. Subsequently, the rainfall increases over the Guinean coast area. According to observations and climate models, the relation between the Atlantic Niño and the rainfall in coastal Guinea is stationary over the 20<sup>th</sup> century. While this relation remains unchanged over the 21<sup>st</sup> century in climate model projections, the strength of the teleconnection is reduced in a warmer climate. The weakened ATL3 effect on the rainfall over the tropical Atlantic (in years of positive ATL3) has been attributed to the stabilization of the atmosphere column above the tropical Atlantic. Analysis of historical and high anthropogenic emission scenario (the Shared Socioeconomic Pathways 5-8.5) simulations from 31 models participating in the sixth phase of the Coupled Model Intercomparison Project suggests an additional role of the Bjerkness feedback. A weakened SST amplitude related to ATL3 positive phases reduces the anomalous westerlies, which in turn increases the upwelling cooling effect on the sea surface. Both the Guinean coast region and the equatorial Atlantic experiment the projected rainfall reduction associated with ATL3, with a higher confidence over the ocean than over the coastal lands.</p>


2017 ◽  
Author(s):  
Julien Jouanno ◽  
Olga Hernandez ◽  
Emilia Sanchez-Gomez ◽  
Bruno Deremble

Abstract. The contributions of the dynamic and thermodynamic forcing to the interannual variability of the Equatorial Atlantic sea surface temperature are investigated using a set of interannual regional simulations of the Tropical Atlantic Ocean. The ocean model is forced with an interactive atmospheric boundary layer, avoiding damping toward prescribed air-temperature as is usually the case in forced ocean models. The model successfully reproduces a large fraction (R2 = 0.55) of the observed interannual variability in the Equatorial Atlantic. In agreement with leading theories, our results confirm that the interannual variations of the dynamical forcing largely contributes to this variability. We show that mean and seasonal upper ocean temperature biases, commonly found in fully coupled models, strongly favor an unrealistic thermodynamic control of the Equatorial Atlantic interannual variability.


Sign in / Sign up

Export Citation Format

Share Document