Attenuation Correction over Ocean for the HIWRAP Dual-Frequency Airborne Scatterometer

2019 ◽  
Vol 36 (10) ◽  
pp. 2015-2030
Author(s):  
R. Meneghini ◽  
L. Liao ◽  
G. M. Heymsfield

AbstractAn important objective in scatterometry is the estimation of near-surface wind speed and direction in the presence of rain. We investigate an attenuation correction method using data from the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) dual-frequency scatterometer, which operates at Ku and Ka band with dual conical scans at incidence angles of 30° and 40°. The method relies on the fact that the differential normalized surface cross section, δσ0 = σ0(Ka) − σ0(Ku), is relatively insensitive to wind speed and direction and that this quantity is closely related to the magnitude of the differential path attenuation, δA = A(Ka) − A(Ku), arising from precipitation, cloud, and atmospheric gases. As the method relies only on the difference between quantities measured in the presence and absence of rain, the estimates are independent of radar calibration error. As a test of the method’s accuracy, we make use of the fact that the radar rain reflectivities just above the surface, as seen along different incidence angles, are approximately the same. This yields constraint equations in the form of differences between pairs of path attenuations along different lines of sight to the surface. A second validation method uses the dual-frequency radar returns from the rain just above the surface where it can be shown that the difference between the Ku- and Ka-band-measured radar reflectivity factors provide an estimate of differential path attenuation. Comparisons between the path attenuations derived from the normalized surface cross section and those from these surface-independent methods generally show good agreement.

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 481
Author(s):  
Chao Liu ◽  
Jianping Guo ◽  
Bihui Zhang ◽  
Hengde Zhang ◽  
Panbo Guan ◽  
...  

In this study, based on the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data, the reliability and performances of their application on clean days and polluted days (based on the PM2.5 mass concentrations) in Beijing were assessed. Conventional meteorological factors and diagnostic physical quantities from the NCEP/FNL data were compared with the L-band radar observations in Beijing in the autumns and winters of 2017–2019. The results indicate that the prediction reliability of the temperature was the best compared with those of the relative humidity and wind speed. It is worth noting that the relative humidity was lower and the near-surface wind speed was higher on polluted days from the NCEP/FNL data than from the observations. As far as diagnostic physical quantity is concerned, it was revealed that the temperature inversion intensity depicted by the NCEP/FNL data was significantly lower than that from the observations, especially on polluted days. For example, the difference in the temperature inversion intensity between the NCEP/FNL data and the observation ranged from −0.56 to −0.77 °C on polluted days. In addition, the difference in the wind shears between the NCEP/FNL reanalysis data and the observations increased to 0.40 m/s in the lower boundary layer on polluted days compared with that on clean days. Therefore, it is suggested that the underestimation of the relative humidity and temperature inversion intensity, and the overestimation of the near-surface wind speed should be seriously considered in simulating the air quality in the model, particularly on polluted days, which should be focused on more in future model developments.


2014 ◽  
Vol 599-601 ◽  
pp. 1605-1609 ◽  
Author(s):  
Ming Zeng ◽  
Zhan Xie Wu ◽  
Qing Hao Meng ◽  
Jing Hai Li ◽  
Shu Gen Ma

The wind is the main factor to influence the propagation of gas in the atmosphere. Therefore, the wind signal obtained by anemometer will provide us valuable clues for searching gas leakage sources. In this paper, the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) are applied to analyze the influence of recurrence characteristics of the wind speed time series under the condition of the same place, the same time period and with the sampling frequency of 1hz, 2hz, 4.2hz, 5hz, 8.3hz, 12.5hz and 16.7hz respectively. Research results show that when the sampling frequency is higher than 5hz, the trends of recurrence nature of different groups are basically unchanged. However, when the sampling frequency is set below 5hz, the original trend of recurrence nature is destroyed, because the recurrence characteristic curves obtained using different sampling frequencies appear cross or overlapping phenomena. The above results indicate that the anemometer will not be able to fully capture the detailed information in wind field when its sampling frequency is lower than 5hz. The recurrence characteristics analysis of the wind speed signals provides an important basis for the optimal selection of anemometer.


Urban Climate ◽  
2020 ◽  
Vol 34 ◽  
pp. 100703
Author(s):  
Yonghong Liu ◽  
Yongming Xu ◽  
Fangmin Zhang ◽  
Wenjun Shu

Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 738 ◽  
Author(s):  
Wenqing Xu ◽  
Like Ning ◽  
Yong Luo

With the large-scale development of wind energy, wind power forecasting plays a key role in power dispatching in the electric power grid, as well as in the operation and maintenance of wind farms. The most important technology for wind power forecasting is forecasting wind speed. The current mainstream methods for wind speed forecasting involve the combination of mesoscale numerical meteorological models with a post-processing system. Our work uses the WRF model to obtain the numerical weather forecast and the gradient boosting decision tree (GBDT) algorithm to improve the near-surface wind speed post-processing results of the numerical weather model. We calculate the feature importance of GBDT in order to find out which feature most affects the post-processing wind speed results. The results show that, after using about 300 features at different height and pressure layers, the GBDT algorithm can output more accurate wind speed forecasts than the original WRF results and other post-processing models like decision tree regression (DTR) and multi-layer perceptron regression (MLPR). Using GBDT, the root mean square error (RMSE) of wind speed can be reduced from 2.7–3.5 m/s in the original WRF result by 1–1.5 m/s, which is better than DTR and MLPR. While the index of agreement (IA) can be improved by 0.10–0.20, correlation coefficient be improved by 0.10–0.18, Nash–Sutcliffe efficiency coefficient (NSE) be improved by −0.06–0.6. It also can be found that the feature which most affects the GBDT results is the near-surface wind speed. Other variables, such as forecast month, forecast time, and temperature, also affect the GBDT results.


2017 ◽  
Vol 12 (11) ◽  
pp. 114019 ◽  
Author(s):  
Verónica Torralba ◽  
Francisco J Doblas-Reyes ◽  
Nube Gonzalez-Reviriego

2007 ◽  
Vol 24 (4) ◽  
pp. 543-563 ◽  
Author(s):  
Shannon T. Brown ◽  
Christopher S. Ruf

Abstract A physically based method is developed to estimate the microphysical structure of the melting layer in stratiform rain using airborne observations by a dual-frequency radar and a 10.7-GHz radiometer. The method employs a nonlinear optimal estimation approach to find two parameters of the gamma drop size distribution (DSD) at each radar range gate from the Ku/Ka-band reflectivities. The DSD profile is used to determine the atmospheric absorption/extinction profile, which enables the surface contribution to the measured brightness temperature to be estimated. The surface wind speed is estimated from the surface emissivity by inverting the forward model, which relates the two. Retrievals in stratiform precipitation require a model to describe the thermodynamic and electromagnetic properties of melting hydrometeors. The melting layer can contribute a majority of the total atmospheric absorption, making it a key component for accurate retrievals in stratiform rain. Several melting layer models were evaluated based on their fit to the dual-frequency reflectivity measurements in the melting layer. A candidate model is selected and tuned to match the radar measurements. The melting layer model is then incorporated into the full forward model for the brightness temperature observed by the radiometer. The surface wind speed assumed in the forward model is forced by the radiometer observations. If the actual surface wind speed is known, this approach provides a powerful constraint on the possible melting layer model. A case study is presented from an airborne campaign over areas of precipitation off the coast of Vancouver Island, British Columbia, Canada. The estimated wind speeds are found to be uncorrelated with the reflectivity and their average value is within 1 m s−1 of that retrieved in a clear area adjacent to the rain.


Sign in / Sign up

Export Citation Format

Share Document