Flow-dependent modeling of acoustic propagation based on DG-FEM method
AbstractThis paper proposes a two-dimensional underwater sound propagation model using the Discontinuous Galerkin Finite Element Method (DG-FEM) to investigate the influence of current on sound propagation. The acoustic field is calculated by the convected wave equation with the current speed parameter. Based on the current speed data from an assimilation model, a two-dimensional coupled acoustic propagation model in the Fram Strait water area is established to observe the variability in propagation loss under different seasonal velocities in the real ocean environment. The transmission loss and signal time structure are examined. The results obtained in different source frequencies are also compared. It appears that the current velocity, time and range variation all have an effect on underwater sound propagation.