Radar Data Assimilation with WRF 4D-Var. Part I: System Development and Preliminary Testing

2013 ◽  
Vol 141 (7) ◽  
pp. 2224-2244 ◽  
Author(s):  
Hongli Wang ◽  
Juanzhen Sun ◽  
Xin Zhang ◽  
Xiang-Yu Huang ◽  
Thomas Auligné

Abstract The major goal of this two-part study is to assimilate radar data into the high-resolution Advanced Research Weather Research and Forecasting Model (ARW-WRF) for the improvement of short-term quantitative precipitation forecasting (QPF) using a four-dimensional variational data assimilation (4D-Var) technique. In Part I the development of a radar data assimilation scheme within the WRF 4D-Var system (WRF 4D-Var) and the preliminary testing of the scheme are described. In Part II the performance of the enhanced WRF 4D-Var system is examined by comparing it with the three-dimensional variational data assimilation system (WRF 3D-Var) for a convective system over the U.S. Great Plains. The WRF 4D-Var radar data assimilation system has been developed with the existing framework of an incremental formulation. The new development for radar data assimilation includes the tangent-linear and adjoint models of a Kessler warm-rain microphysics scheme and the new control variables of cloud water, rainwater, and vertical velocity and their error statistics. An ensemble forecast with 80 members is used to produce background error covariance. The preliminary testing presented in this paper includes single-observation experiments as well as real data assimilation experiments on a squall line with assimilation windows of 5, 15, and 30 min. The results indicate that the system is able to obtain anisotropic multivariate analyses at the convective scale and improve precipitation forecasts. The results also suggest that the incremental approach with successive basic-state updates works well at the convection-permitting scale for radar data assimilation with the selected assimilation windows.

2014 ◽  
Vol 142 (10) ◽  
pp. 3586-3613 ◽  
Author(s):  
A. Routray ◽  
S. C. Kar ◽  
P. Mali ◽  
K. Sowjanya

Abstract In a variational data assimilation system, background error statistics (BES) spread the influence of the observations in space and filter analysis increments through dynamic balance or statistical relationships. In a data-sparse region such as the Bay of Bengal, BES play an important role in defining the location and structure of monsoon depressions (MDs). In this study, the Indian-region-specific BES have been computed for the Weather Research and Forecasting (WRF) three-dimensional variational data assimilation system. A comparative study using single observation tests is carried out using the computed BES and global BES within the WRF system. Both sets of BES are used in the assimilation cycles and forecast runs for simulating the meteorological features associated with the MDs. Numerical experiments have been conducted to assess the relative impact of various BES in the analysis and simulations of the MDs. The results show that use of regional BES in the assimilation cycle has a positive impact on the prediction of the location, propagation, and development of rainbands associated with the MDs. The track errors of MDs are smaller when domain-specific BES are used in the assimilation cycle. Additional experiments have been conducted using data from the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim) as initial and boundary conditions (IBCs) in the assimilation cycle. The results indicate that the use of domain-dependent BES and high-resolution ERA-I data as IBCs further improved the initial conditions for the model leading to better forecasts of the MDs.


2010 ◽  
Vol 27 (7) ◽  
pp. 1140-1152 ◽  
Author(s):  
Eunha Lim ◽  
Juanzhen Sun

Abstract A Doppler velocity dealiasing algorithm is developed within the storm-scale four-dimensional radar data assimilation system known as the Variational Doppler Radar Analysis System (VDRAS). The innovative aspect of the algorithm is that it dealiases Doppler velocity at each grid point independently by using three-dimensional wind fields obtained either from an objective analysis using conventional observations and mesoscale model output or from a rapidly updated analysis of VDRAS that assimilates radar data. This algorithm consists of three steps: preserving horizontal shear, global dealiasing using reference wind from the objective analysis or the VDRAS analysis, and local dealiasing. It is automated and intended to be used operationally for radar data assimilation using numerical weather prediction models. The algorithm was tested with 384 volumes of radar data observed from the Next Generation Weather Radar (NEXRAD) for a severe thunderstorm that occurred during 15 June 2002. It showed that the algorithm was effective in dealiasing large areas of aliased velocities when the wind from the objective analysis was used as the reference and that more accurate dealiasing was achieved by using the continuously cycled VDRAS analysis.


2007 ◽  
Vol 135 (10) ◽  
pp. 3381-3404 ◽  
Author(s):  
Qingnong Xiao ◽  
Juanzhen Sun

Abstract The impact of multiple–Doppler radar data assimilation on quantitative precipitation forecasting (QPF) is examined in this study. The newly developed Weather Research and Forecasting (WRF) model Advanced Research WRF (ARW) and its three-dimensional variational data assimilation system (WRF 3DVAR) are used. In this study, multiple–Doppler radar data assimilation is applied in WRF 3DVAR cycling mode to initialize a squall-line convective system on 13 June 2002 during the International H2O Project (IHOP_2002) and the ARW QPF skills are evaluated for the case. Numerical experiments demonstrate that WRF 3DVAR can successfully assimilate Doppler radial velocity and reflectivity from multiple radar sites and extract useful information from the radar data to initiate the squall-line convective system. Assimilation of both radial velocity and reflectivity results in sound analyses that show adjustments in both the dynamical and thermodynamical fields that are consistent with the WRF 3DVAR balance constraint and background error correlation. The cycling of the Doppler radar data from the 12 radar sites at 2100 UTC 12 June and 0000 UTC 13 June produces a more detailed mesoscale structure of the squall-line convection in the model initial conditions at 0000 UTC 13 June. Evaluations of the ARW QPF skills with initialization via Doppler radar data assimilation demonstrate that the more radar data in the temporal and spatial dimensions are assimilated, the more positive is the impact on the QPF skill. Assimilation of both radial velocity and reflectivity has more positive impact on the QPF skill than does assimilation of either radial velocity or reflectivity only. The improvement of the QPF skill with multiple-radar data assimilation is more clearly observed in heavy rainfall than in light rainfall. In addition to the improvement of the QPF skill, the simulated structure of the squall line is also enhanced by the multiple–Doppler radar data assimilation in the WRF 3DVAR cycling experiment. The vertical airflow pattern shows typical characteristics of squall-line convection. The cold pool and its related squall-line convection triggering process are better initiated in the WRF 3DVAR analysis and simulated in the ARW forecast when multiple–Doppler radar data are assimilated.


2013 ◽  
Vol 141 (7) ◽  
pp. 2245-2264 ◽  
Author(s):  
Juanzhen Sun ◽  
Hongli Wang

Abstract The Weather Research and Forecasting Model (WRF) four-dimensional variational data assimilation (4D-Var) system described in Part I of this study is compared with its corresponding three-dimensional variational data assimilation (3D-Var) system using a Great Plains squall line observed during the International H2O Project. Two 3D-Var schemes are used in the comparison: a standard 3D-Var radar data assimilation (DA) that is the same as the 4D-Var except for the exclusion of the constraining dynamical model and an enhanced 3D-Var that includes a scheme to assimilate an estimated in-cloud humidity field. The comparison is made by verifying their skills in 0–6-h quantitative precipitation forecast (QPF) against stage-IV analysis, as well as in wind forecasts against radial velocity observations. The relative impacts of assimilating radial velocity and reflectivity on QPF are also compared between the 4D-Var and 3D-Var by conducting data-denial experiments. The results indicate that 4D-Var substantially improves the QPF skill over the standard 3D-Var for the entire 6-h forecast range and over the enhanced 3D-Var for most forecast hours. Radial velocity has a larger impact relative to reflectivity in 4D-Var than in 3D-Var in the first 3 h because of a quicker precipitation spinup. The analyses and forecasts from the 4D-Var and 3D-Var schemes are further compared by examining the meridional wind, horizontal convergence, low-level cold pool, and midlevel temperature perturbation, using analyses from the Variational Doppler Radar Analysis System (VDRAS) as references. The diagnoses of these fields suggest that the 4D-Var analyzes the low-level cold pool, its leading edge convergence, and midlevel latent heating in closer resemblance to the VDRAS analyses than the 3D-Var schemes.


2006 ◽  
Vol 21 (4) ◽  
pp. 502-522 ◽  
Author(s):  
Qingyun Zhao ◽  
John Cook ◽  
Qin Xu ◽  
Paul R. Harasti

Abstract A high-resolution radar data assimilation system is presented for high-resolution numerical weather prediction models. The system is under development at the Naval Research Laboratory for the Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System. A variational approach is used to retrieve three-dimensional dynamical fields of atmospheric conditions from multiple-Doppler radar observations of radial velocity within a limited area. The methodology is described along with a preliminary evaluation of the impact of assimilated radar data on model forecasts using a case study of a squall line that occurred along the east coast of the United States on 9 May 2003. Results from the experiments show a significant impact from the assimilated radar radial velocity data on the model forecast of not just dynamical but also hydrological fields at all model levels for the duration of the storm. A verification system has also been developed to assess the radar data assimilation impact, and the results show improvements in the three-dimensional wind forecasts but relatively small changes in the prediction of storm locations. This study highlights the need to develop a continuous radar data assimilation system to maximize the impact of the data.


Sign in / Sign up

Export Citation Format

Share Document