scholarly journals Assimilating surface observations in a four-dimensional variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case

2016 ◽  
Vol 33 (10) ◽  
pp. 1106-1119 ◽  
Author(s):  
Xingchao Chen ◽  
Kun Zhao ◽  
Juanzhen Sun ◽  
Bowen Zhou ◽  
Wen-Chau Lee
2010 ◽  
Vol 27 (7) ◽  
pp. 1140-1152 ◽  
Author(s):  
Eunha Lim ◽  
Juanzhen Sun

Abstract A Doppler velocity dealiasing algorithm is developed within the storm-scale four-dimensional radar data assimilation system known as the Variational Doppler Radar Analysis System (VDRAS). The innovative aspect of the algorithm is that it dealiases Doppler velocity at each grid point independently by using three-dimensional wind fields obtained either from an objective analysis using conventional observations and mesoscale model output or from a rapidly updated analysis of VDRAS that assimilates radar data. This algorithm consists of three steps: preserving horizontal shear, global dealiasing using reference wind from the objective analysis or the VDRAS analysis, and local dealiasing. It is automated and intended to be used operationally for radar data assimilation using numerical weather prediction models. The algorithm was tested with 384 volumes of radar data observed from the Next Generation Weather Radar (NEXRAD) for a severe thunderstorm that occurred during 15 June 2002. It showed that the algorithm was effective in dealiasing large areas of aliased velocities when the wind from the objective analysis was used as the reference and that more accurate dealiasing was achieved by using the continuously cycled VDRAS analysis.


2007 ◽  
Vol 135 (10) ◽  
pp. 3381-3404 ◽  
Author(s):  
Qingnong Xiao ◽  
Juanzhen Sun

Abstract The impact of multiple–Doppler radar data assimilation on quantitative precipitation forecasting (QPF) is examined in this study. The newly developed Weather Research and Forecasting (WRF) model Advanced Research WRF (ARW) and its three-dimensional variational data assimilation system (WRF 3DVAR) are used. In this study, multiple–Doppler radar data assimilation is applied in WRF 3DVAR cycling mode to initialize a squall-line convective system on 13 June 2002 during the International H2O Project (IHOP_2002) and the ARW QPF skills are evaluated for the case. Numerical experiments demonstrate that WRF 3DVAR can successfully assimilate Doppler radial velocity and reflectivity from multiple radar sites and extract useful information from the radar data to initiate the squall-line convective system. Assimilation of both radial velocity and reflectivity results in sound analyses that show adjustments in both the dynamical and thermodynamical fields that are consistent with the WRF 3DVAR balance constraint and background error correlation. The cycling of the Doppler radar data from the 12 radar sites at 2100 UTC 12 June and 0000 UTC 13 June produces a more detailed mesoscale structure of the squall-line convection in the model initial conditions at 0000 UTC 13 June. Evaluations of the ARW QPF skills with initialization via Doppler radar data assimilation demonstrate that the more radar data in the temporal and spatial dimensions are assimilated, the more positive is the impact on the QPF skill. Assimilation of both radial velocity and reflectivity has more positive impact on the QPF skill than does assimilation of either radial velocity or reflectivity only. The improvement of the QPF skill with multiple-radar data assimilation is more clearly observed in heavy rainfall than in light rainfall. In addition to the improvement of the QPF skill, the simulated structure of the squall line is also enhanced by the multiple–Doppler radar data assimilation in the WRF 3DVAR cycling experiment. The vertical airflow pattern shows typical characteristics of squall-line convection. The cold pool and its related squall-line convection triggering process are better initiated in the WRF 3DVAR analysis and simulated in the ARW forecast when multiple–Doppler radar data are assimilated.


2013 ◽  
Vol 141 (7) ◽  
pp. 2224-2244 ◽  
Author(s):  
Hongli Wang ◽  
Juanzhen Sun ◽  
Xin Zhang ◽  
Xiang-Yu Huang ◽  
Thomas Auligné

Abstract The major goal of this two-part study is to assimilate radar data into the high-resolution Advanced Research Weather Research and Forecasting Model (ARW-WRF) for the improvement of short-term quantitative precipitation forecasting (QPF) using a four-dimensional variational data assimilation (4D-Var) technique. In Part I the development of a radar data assimilation scheme within the WRF 4D-Var system (WRF 4D-Var) and the preliminary testing of the scheme are described. In Part II the performance of the enhanced WRF 4D-Var system is examined by comparing it with the three-dimensional variational data assimilation system (WRF 3D-Var) for a convective system over the U.S. Great Plains. The WRF 4D-Var radar data assimilation system has been developed with the existing framework of an incremental formulation. The new development for radar data assimilation includes the tangent-linear and adjoint models of a Kessler warm-rain microphysics scheme and the new control variables of cloud water, rainwater, and vertical velocity and their error statistics. An ensemble forecast with 80 members is used to produce background error covariance. The preliminary testing presented in this paper includes single-observation experiments as well as real data assimilation experiments on a squall line with assimilation windows of 5, 15, and 30 min. The results indicate that the system is able to obtain anisotropic multivariate analyses at the convective scale and improve precipitation forecasts. The results also suggest that the incremental approach with successive basic-state updates works well at the convection-permitting scale for radar data assimilation with the selected assimilation windows.


2012 ◽  
Vol 26 (6) ◽  
pp. 717-734 ◽  
Author(s):  
Daosheng Xu ◽  
Aimei Shao ◽  
Chongjian Qiu

2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Qin Xu ◽  
Li Wei ◽  
Wei Gu ◽  
Jiandong Gong ◽  
Qingyun Zhao

A 3.5-dimensional variational method is developed for Doppler radar data assimilation. In this method, incremental analyses are performed in three steps to update the model state upon the background state provided by the model prediction. First, radar radial-velocity observations from three consecutive volume scans are analyzed on the model grid. The analyzed radial-velocity fields are then used in step 2 to produce incremental analyses for the vector velocity fields at two time levels between the three volume scans. The analyzed vector velocity fields are used in step 3 to produce incremental analyses for the thermodynamic fields at the central time level accompanied by the adjustments in water vapor and hydrometeor mixing ratios based on radar reflectivity observations. The finite element B-spline representations and recursive filter are used to reduce the dimension of the analysis space and enhance the computational efficiency. The method is applied to a squall line case observed by the phased-array radar with rapid volume scans at the National Weather Radar Testbed and is shown to be effective in assimilating the phased-array radar observations and improve the prediction of the subsequent evolution of the squall line.


2006 ◽  
Vol 21 (4) ◽  
pp. 502-522 ◽  
Author(s):  
Qingyun Zhao ◽  
John Cook ◽  
Qin Xu ◽  
Paul R. Harasti

Abstract A high-resolution radar data assimilation system is presented for high-resolution numerical weather prediction models. The system is under development at the Naval Research Laboratory for the Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System. A variational approach is used to retrieve three-dimensional dynamical fields of atmospheric conditions from multiple-Doppler radar observations of radial velocity within a limited area. The methodology is described along with a preliminary evaluation of the impact of assimilated radar data on model forecasts using a case study of a squall line that occurred along the east coast of the United States on 9 May 2003. Results from the experiments show a significant impact from the assimilated radar radial velocity data on the model forecast of not just dynamical but also hydrological fields at all model levels for the duration of the storm. A verification system has also been developed to assess the radar data assimilation impact, and the results show improvements in the three-dimensional wind forecasts but relatively small changes in the prediction of storm locations. This study highlights the need to develop a continuous radar data assimilation system to maximize the impact of the data.


Sign in / Sign up

Export Citation Format

Share Document