scholarly journals Diurnal Variations of NLDN-Reported Cloud-to-Ground Lightning in the United States

2014 ◽  
Vol 142 (3) ◽  
pp. 1037-1052 ◽  
Author(s):  
Ronald L. Holle

Abstract National maps of cloud-to-ground lightning flash density (in flashes per square kilometer per year) for one or more years have been produced since the National Lightning Detection Network (NLDN) was first deployed across the contiguous United States in 1989. However, no single publication includes maps of cloud-to-ground flash density across the domain and adjacent areas during the entire diurnal cycle. Cloud-to-ground lightning has strong and variable diurnal changes across the United States that should be taken into account for outdoor lightning-vulnerable activities, particularly those involving human safety. For this study, NLDN cloud-to-ground flash data were compiled in 20 km by 20 km grid squares from 2005 to 2012 for the lower 48 states. A unique feature of this study is that maps were prepared to coincide with local time, not time zones. NLDN flashes were assigned to 2-h time periods in 5° longitude bands. Composite maps of the 2-h periods with the most lightning in each grid square were also prepared. The afternoon from 1200 to 1800 local mean time provides two-thirds of the day’s lightning. However, lightning activity starts before noon over western mountains and onshore along the Atlantic and Gulf of Mexico coasts. These areas are where recurring lightning-vulnerable recreation and workplace activities should expect the threat at these times, rather than view them as an anomaly. An additional result of the study is the midday beginning of lightning over the higher terrain of the western states, then the maximum activity moves steadily eastward. These storms pose a threat to late-afternoon and evening recreation. In some Midwest and plains locations, lightning is most frequent after midnight.

2011 ◽  
Vol 139 (5) ◽  
pp. 1323-1337 ◽  
Author(s):  
Antti Mäkelä ◽  
Pekka Rossi ◽  
David M. Schultz

A method is developed to quantify thunderstorm intensity according to cloud-to-ground lightning flashes (hereafter ground flashes) determined by a lightning-location sensor network. The method is based on the ground flash density ND per thunderstorm day (ground flashes per square kilometer per thunderstorm day) calculated on 20 km × 20 km fixed squares. Because the square size roughly corresponds to the area covered by a typical thunderstorm, the flash density for one square defines a unit thunderstorm for the purposes of this study. This method is tested with ground flash data obtained from two nationwide lightning-location systems: the National Lightning Detection Network (NLDN) in the contiguous United States and the portion of the Nordic Lightning Information System (NORDLIS) in Finland. The distribution of daily ground flash density ND is computed for all of Finland and four 800 000 km2 regions in the United States (identified as western, central, eastern, and Florida). Although Finland and all four U.S. regions have median values of ND of 0.01–0.03 flashes per square kilometer per thunderstorm day—indicating that most thunderstorms produce relatively few ground flashes regardless of geographical region—the most intense 1% of the storms (as measured by the 99th percentiles of the ND distributions within each region) show much larger differences among regions. For example, the most intense 1% of the ND distributions is 1.3 flashes per square kilometer per thunderstorm day in the central U.S. region, but only 0.2 flashes per square kilometer per thunderstorm day in Finland. The spatial distribution of the most intense 1% of the ND distributions illustrates that the most intense thunderstorm days occur in the central United States and upper Midwest, which differs from the maxima of the average annual flash density NA and the number of thunderstorm days TD, both of which occur in Florida and along the coast of the Gulf of Mexico. This method for using ND to quantify thunderstorm intensity is applicable to any region as long as the detection efficiency of the lightning-location network is high enough or known. This method can also be employed in operational forecasting to provide a quantitative measure of the lightning intensity of thunderstorms relative to climatology.


2016 ◽  
Vol 144 (8) ◽  
pp. 2855-2870 ◽  
Author(s):  
Ronald L. Holle ◽  
Kenneth L. Cummins ◽  
William A. Brooks

Abstract Annual maps of cloud-to-ground lightning flash density have been produced since the deployment of the National Lightning Detection Network (NLDN). However, a comprehensive national summary of seasonal, monthly, and weekly lightning across the contiguous United States has not been developed. Cloud-to-ground lightning is not uniformly distributed in time, space, or frequency. Knowledge of these variations is useful for understanding meteorological processes responsible for lightning occurrence, planning outdoor events, anticipating impacts of lightning on power reliability, and relating to severe weather. To address this gap in documentation of lightning occurrence, the variability on seasonal, monthly, and weekly scales is first addressed with NLDN flash data from 2005 to 2014 for the 48 states and adjacent regions. Flash density and the percentage of each season’s portion of the annual total are compiled. In spring, thunderstorms occur most often over southeastern states. Lightning spreads north and west until by June, most areas have lightning. New England, the northern Rockies, most of Canada, and the Florida Peninsula have a small percentage of lightning outside of summer. Arizona and portions of adjacent states have the highest incidence in July and August. Flash densities reduce in September in most regions. This seasonal, monthly, and weekly overview complements a recent study of diurnal variations of flashes to document when and where lightning occurs over the United States. NLDN seasonal maps indicate a summer lightning dominance in the northern and western United States that extends into Canada using data compiled from GLD360 network observations. GLD360 also extends NLDN seasonal maps and percentages into Mexico, the Caribbean, and offshore regions.


2019 ◽  
Vol 148 (1) ◽  
pp. 313-332 ◽  
Author(s):  
Thomas L. Koehler

Abstract This study employs cloud-to-ground (CG) lightning flash data from the U.S. National Lightning Detection Network (NLDN) to examine temporal and spatial distributions of lightning flash and thunderstorm day (TD) occurrences over the contiguous United States from 1993 to 2018. TD distributions are estimated from NLDN CG flashes using 4 thunder audibility approximations: 5 and 10 nautical mile (n mi; 1 n mi = 1.852 km) audibility ranges, and minima of 1 and 2 flashes within the audibility range. The 26-yr period examined is longer than previous studies using NLDN data, and the TD results can be compared directly to climatologies derived from surface weather observations dating back to the late 1890s. Results based on the abundant NLDN data avoid limitations introduced by the coarse horizontal resolution of surface observations inherent in pre-NLDN TD climatologies. Annual mean flash density and annual and monthly mean TD distributions are derived from almost 568 million NLDN CG flashes. A mean annual maximum of more than 16 flashes km−2 is found near Tampa, Florida. The mean annual TD maximum of 113 days (from at least 2 flashes within 10 n mi) occurs in southern Florida. Regions exceeding 70 TDs are found from eastern Texas eastward into Florida, and over the southern Rocky Mountains. Large positive deviations from the mean number of TDs extend from Texas northwestward into Colorado during 2003–07, followed by large negative deviations over the same region during 2008–12. Both deviation patterns are similar to expected summertime precipitation anomaly patterns over the United States during El Niño and La Niña years, respectively.


2020 ◽  
Vol 33 (23) ◽  
pp. 10239-10261 ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Pieter Groenemeijer ◽  
Roger Edwards ◽  
Harold E. Brooks ◽  
...  

AbstractAs lightning-detection records lengthen and the efficiency of severe weather reporting increases, more accurate climatologies of convective hazards can be constructed. In this study we aggregate flashes from the National Lightning Detection Network (NLDN) and Arrival Time Difference long-range lightning detection network (ATDnet) with severe weather reports from the European Severe Weather Database (ESWD) and Storm Prediction Center (SPC) Storm Data on a common grid of 0.25° and 1-h steps. Each year approximately 75–200 thunderstorm hours occur over the southwestern, central, and eastern United States, with a peak over Florida (200–250 h). The activity over the majority of Europe ranges from 15 to 100 h, with peaks over Italy and mountains (Pyrenees, Alps, Carpathians, Dinaric Alps; 100–150 h). The highest convective activity over continental Europe occurs during summer and over the Mediterranean during autumn. The United States peak for tornadoes and large hail reports is in spring, preceding the maximum of lightning and severe wind reports by 1–2 months. Convective hazards occur typically in the late afternoon, with the exception of the Midwest and Great Plains, where mesoscale convective systems shift the peak lightning threat to the night. The severe wind threat is delayed by 1–2 h compared to hail and tornadoes. The fraction of nocturnal lightning over land ranges from 15% to 30% with the lowest values observed over Florida and mountains (~10%). Wintertime lightning shares the highest fraction of severe weather. Compared to Europe, extreme events are considerably more frequent over the United States, with maximum activity over the Great Plains. However, the threat over Europe should not be underestimated, as severe weather outbreaks with damaging winds, very large hail, and significant tornadoes occasionally occur over densely populated areas.


2011 ◽  
Vol 139 (5) ◽  
pp. 1305-1322 ◽  
Author(s):  
Richard E. Orville ◽  
Gary R. Huffines ◽  
William R. Burrows ◽  
Kenneth L. Cummins

Cloud-to-ground (CG) lightning data have been analyzed for the years 2001–09 for North America, which includes Alaska, Canada, and the lower 48 U.S. states. Flashes recorded within the North American Lightning Detection Network (NALDN) are examined. No corrections for detection efficiency variability are made over the 9 yr of the dataset or over the large geographical area comprising North America. There were network changes in the NALDN during the 9 yr, but these changes have not been corrected for nor have the recorded data been altered in any way with the exception that all positive lightning reports with peak currents less than 15 kA have been deleted. Thus, the reader should be aware that secular changes are not just climatological in nature. All data were analyzed with a spatial resolution of 20 km. The analyses presented in this work provide a synoptic view of the interannual variability of lightning observations in North America, including the impacts of physical changes in the network during the 9 yr of study. These data complement and extend previous analyses that evaluate the U.S. NLDN during periods of upgrade. The total (negative and positive) flashes for ground flash density, the percentage of positive lightning, and the positive flash density have been analyzed. Furthermore, the negative and positive first stroke peak currents and the flash multiplicity have been examined. The highest flash densities in Canada are along the U.S.–Canadian border (1–2 flashes per square kilometer) and in the United States along the Gulf of Mexico coast from Texas through Florida (exceeding 14 flashes per square kilometer in Florida). The Gulf Stream is “outlined” by higher flash densities off the east coast of the United States. Maximum annual positive flash densities in Canada range primarily from 0.01 to 0.3 flashes per square kilometer, and in the United States to over 0.5 flashes per square kilometer in the Midwest and in the states of Louisiana and Mississippi. The annual percentage of positive lightning to ground varies from less than 2% over Florida to values exceeding 25% off the West Coast, Alaska, and the Yukon. A localized maximum in the percentage of positive lightning in the NALDN occurs in Manitoba and western Ontario, just north of North Dakota and Minnesota. When averaged over North America, first stroke negative median peak currents range from 19.8 kA in 2001 to 16.0 kA in 2009 and for all years, average 16.1 kA. First stroke positive median peak currents range from a high of 29.0 kA in 2008 and 2009 to a low of 23.3 kA in 2003 with a median of 25.7 kA for all years. There is a relatively sharp transition from low to high median negative peak currents along the Gulf and Atlantic coasts of the United States. No sharp transitions are observed for the median positive peak currents. Relatively lower positive peak currents occur throughout the southeastern United States. The highest values of mean negative multiplicity exceed 3.0 strokes per flash in the NALDN with some variation over the 9 yr. Lower values of mean negative multiplicity occur in the western United States. Positive flash mean multiplicity is slightly higher than 1.1, with the highest values of 1.7 observed in the southwestern states. As has been noted in prior research, CG lightning has significant variations from storm to storm as well as between geographical regions and/or seasons and, consequently, a single distribution for any lightning parameter, such as multiplicity or peak current, may not be sufficient to represent or describe the parameter.


2010 ◽  
Vol 138 (9) ◽  
pp. 3623-3633 ◽  
Author(s):  
Scott D. Rudlosky ◽  
Henry E. Fuelberg

Abstract The National Lightning Detection Network (NLDN) underwent a major upgrade during 2002–03 that increased its sensitivity and improved its performance. It is important to examine cloud-to-ground (CG) lightning distributions before and after this upgrade because CG characteristics depend on both measurement capabilities and meteorological variability. This study compares preupgrade (1996–99, 2001) and postupgrade (2004–09) CG distributions over the contiguous United States to examine the influence of the recent upgrade and to provide baseline postupgrade averages. Increased sensitivity explains most of the differences in the pre- and postupgrade distributions, including a general increase in total CG and positive CG (+CG) flash densities. The increase in +CG occurs despite the use of a greater weak +CG threshold for removing ambiguous +CG reports (post 15 kA versus pre 10 kA). Conversely, the average +CG percentage decreased from 10.61% to 8.65% following the upgrade. The average +CG (−CG) multiplicity increased from 1.10 (2.05) before to 1.54 (2.41) after the upgrade. Since true +CG flashes rarely contain more than one return stroke, explanations for the greater than unity +CG multiplicities remain unclear. Postupgrade results indicate that regions with mostly weak peak current +CG flashes now exhibit greater average +CG multiplicities, whereas regions with mainly strong +CG flashes now exhibit smaller average +CG multiplicities. The combination of NLDN performance, meteorological conditions, and physical differences in first −CG return strokes over saltwater produce maxima in −CG multiplicity and peak current over the coastal waters of the southeast United States.


2020 ◽  
Vol 33 (23) ◽  
pp. 10263-10286 ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Tomáš Púčik ◽  
Kimberly A. Hoogewind ◽  
Harold E. Brooks

AbstractIn this study we investigate convective environments and their corresponding climatological features over Europe and the United States. For this purpose, National Lightning Detection Network (NLDN) and Arrival Time Difference long-range lightning detection network (ATDnet) data, ERA5 hybrid-sigma levels, and severe weather reports from the European Severe Weather Database (ESWD) and Storm Prediction Center (SPC) Storm Data were combined on a common grid of 0.25° and 1-h steps over the period 1979–2018. The severity of convective hazards increases with increasing instability and wind shear (WMAXSHEAR), but climatological aspects of these features differ over both domains. Environments over the United States are characterized by higher moisture, CAPE, CIN, wind shear, and midtropospheric lapse rates. Conversely, 0–3-km CAPE and low-level lapse rates are higher over Europe. From the climatological perspective severe thunderstorm environments (hours) are around 3–4 times more frequent over the United States with peaks across the Great Plains, Midwest, and Southeast. Over Europe severe environments are the most common over the south with local maxima in northern Italy. Despite having lower CAPE (tail distribution of 3000–4000 J kg−1 compared to 6000–8000 J kg−1 over the United States), thunderstorms over Europe have a higher probability for convective initiation given a favorable environment. Conversely, the lowest probability for initiation is observed over the Great Plains, but, once a thunderstorm develops, the probability that it will become severe is much higher compared to Europe. Prime conditions for severe thunderstorms over the United States are between April and June, typically from 1200 to 2200 central standard time (CST), while across Europe favorable environments are observed from June to August, usually between 1400 and 2100 UTC.


2008 ◽  
Vol 12 (11) ◽  
pp. 1-30 ◽  
Author(s):  
L. S. Rose ◽  
J. A. Stallins ◽  
M. L. Bentley

Abstract This study explores how the Atlanta, Georgia (United States), urban region influences warm-season (May through September) cloud-to-ground lightning flashes and precipitation. Eight years (1995–2003) of flashes from the National Lightning Detection Network and mean accumulated precipitation from the North American Regional Reanalysis model were mapped under seven different wind speed and direction combinations derived from cluster analysis. Overlays of these data affirmed a consistent coupling of lightning and precipitation enhancement around Atlanta. Maxima in precipitation and lightning shifted in response to changes in wind direction. Differences in the patterns of flash metrics (flash counts versus thunderstorm counts), the absence of any strong urban signal in the flashes of individual thunderstorms, and the scales over which flashes and precipitation enhancement developed are discussed in light of their support for land-cover- and aerosol-based mechanisms of urban weather modification. This study verifies Atlanta’s propensity to conjointly enhance cloud-to-ground lightning and precipitation production in the absence of strong synoptic forcing. However, because of variability in aerosol characteristics and the dynamics of land use change, it may be a simplification to assume that this observed enhancement will be persistent across all scales of analysis.


Sign in / Sign up

Export Citation Format

Share Document