scholarly journals Impact of Subgrid-Scale Orography on Equatorial Angular Momentum Budget and the Cold Surges in a General Circulation Model

2015 ◽  
Vol 143 (11) ◽  
pp. 4443-4458
Author(s):  
Sylvain Mailler ◽  
François Lott

Abstract The dynamical relations between equatorial atmospheric angular momentum (EAAM), equatorial mountain torques, and cold surges are analyzed in a general circulation model (GCM). First, the authors show that the global EAAM budget is well closed in the GCM, much better than in the NCEP–NCAR reanalysis. They then confirm that the equatorial torques due to the Tibetan Plateau, the Rockies, and the Andes are well related to the cold surges developing over East Asia, North America, and South America, respectively. For all these mountains, a peak in the equatorial mountain torque components precedes by few days the development of a cold surge, confirming that the cold surge’s “preconditioning” is dynamically driven by large-scale mountains. The authors also analyze the contribution of the subgrid-scale orography (SSO) parameterizations and find that they contribute substantially to the torques. In experiments where these parameterizations are almost entirely reduced over a given massif, the authors find that the explicit pressure torques produced by that massif largely compensate the reduction in the parameterized torques. On the one hand, this proves that the explicitly resolved equatorial mountain torques are effective dynamical drivers of the flow dynamics, since they are enhanced when a parameterized torque is reduced. On the other hand, this shows that the cold surges can be captured in GCMs, provided that the synoptic conditions prior to their onset are realistic. The compensation between torques is nevertheless not complete and some weakening of the cold surges is found when the parameterized mountain torques are reduced.

2011 ◽  
Vol 24 (16) ◽  
pp. 4368-4384 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Silvio Gualdi ◽  
Alessio Bellucci ◽  
Antonella Sanna ◽  
Pier Giuseppe Fogli ◽  
...  

Abstract In this paper the interplay between tropical cyclones (TCs) and the Northern Hemispheric ocean heat transport (OHT) is investigated. In particular, results from a numerical simulation of the twentieth-century and twenty-first-century climates, following the Intergovernmental Panel on Climate Change (IPCC) twentieth-century run (20C3M) and A1B scenario protocols, respectively, have been analyzed. The numerical simulations have been performed using a state-of-the-art global atmosphere–ocean–sea ice coupled general circulation model (CGCM) with relatively high-resolution (T159) in the atmosphere. The CGCM skill in reproducing a realistic TC climatology has been assessed by comparing the model results from the simulation of the twentieth century with available observations. The model simulates tropical cyclone–like vortices with many features similar to the observed TCs. Specifically, the simulated TCs exhibit realistic structure, geographical distribution, and interannual variability, indicating that the model is able to capture the basic mechanisms linking the TC activity with the large-scale circulation. The cooling of the surface ocean observed in correspondence of the TCs is well simulated by the model. TC activity is shown to significantly increase the poleward OHT out of the tropics and decrease the poleward OHT from the deep tropics on short time scales. This effect, investigated by looking at the 100 most intense Northern Hemisphere TCs, is strongly correlated with the TC-induced momentum flux at the ocean surface, where the winds associated with the TCs significantly weaken (strengthen) the trade winds in the 5°–18°N (18°–30°N) latitude belt. However, the induced perturbation does not impact the yearly averaged OHT. The frequency and intensity of the TCs appear to be substantially stationary through the entire 1950–2069 simulated period, as does the effect of the TCs on the OHT.


MAUSAM ◽  
2021 ◽  
Vol 50 (4) ◽  
pp. 391-400
Author(s):  
BIJU THOMAS ◽  
S.V. KASTURE ◽  
S. V. SATYAN

A global, spectral Atmospheric General Circulation Model (AGCM) has been developed indigenously at Physical Research Laboratory (PRL) for climate studies. The model has six a levels in the vertical and has horizontal resolution of 21 waves with rhomboidal truncation. The model includes smooth topography, planetary boundary layer, deep convection, large scale condensation, interactive hydrology, radiation with interactive clouds and diurnal cycle. Sea surface temperature and sea ice values were fixed based on climatological data for different calender months.   The model was integrated for six years starting with an isothermal atmosphere (2400K), zero winds initial conditions and forcing from incoming solar radiation. After one year the model stabilizes. The seasonal averages of various fields of the last five years are discussed in this paper. It is found that the model reproduces reasonably well the seasonal features of atmospheric circulation, seasonal variability and hemispheric differences.


Sign in / Sign up

Export Citation Format

Share Document