scholarly journals Assessment of NWP Forecast Models in Simulating Offshore Winds through the Lower Boundary Layer by Measurements from a Ship-Based Scanning Doppler Lidar

2017 ◽  
Vol 145 (10) ◽  
pp. 4277-4301 ◽  
Author(s):  
Yelena L. Pichugina ◽  
Robert M. Banta ◽  
Joseph B. Olson ◽  
Jacob R. Carley ◽  
Melinda C. Marquis ◽  
...  

Evaluation of model skill in predicting winds over the ocean was performed by comparing retrospective runs of numerical weather prediction (NWP) forecast models to shipborne Doppler lidar measurements in the Gulf of Maine, a potential region for U.S. coastal wind farm development. Deployed on board the NOAA R/V Ronald H. Brown during a 2004 field campaign, the high-resolution Doppler lidar (HRDL) provided accurate motion-compensated wind measurements from the water surface up through several hundred meters of the marine atmospheric boundary layer (MABL). The quality and resolution of the HRDL data allow detailed analysis of wind flow at heights within the rotor layer of modern wind turbines and data on other critical variables to be obtained, such as wind speed and direction shear, turbulence, low-level jet properties, ramp events, and many other wind-energy-relevant aspects of the flow. This study will focus on the quantitative validation of NWP models’ wind forecasts within the lower MABL by comparison with HRDL measurements. Validation of two modeling systems rerun in special configurations for these 2004 cases—the hourly updated Rapid Refresh (RAP) system and a special hourly updated version of the North American Mesoscale Forecast System [NAM Rapid Refresh (NAMRR)]—are presented. These models were run at both normal-resolution (RAP, 13 km; NAMRR, 12 km) and high-resolution versions: the NAMRR-CONUS-nest (4 km) and the High-Resolution Rapid Refresh (HRRR, 3 km). Each model was run twice: with (experimental runs) and without (control runs) assimilation of data from 11 wind profiling radars located along the U.S. East Coast. The impact of the additional assimilation of the 11 profilers was estimated by comparing HRDL data to modeled winds from both runs. The results obtained demonstrate the importance of high-resolution lidar measurements to validate NWP models and to better understand what atmospheric conditions may impact the accuracy of wind forecasts in the marine atmospheric boundary layer. Results of this research will also provide a first guess as to the uncertainties of wind resource assessment using NWP models in one of the U.S. offshore areas projected for wind plant development.

2021 ◽  
Author(s):  
Julian Quimbayo-Duarte ◽  
Juerg Schmidli

<p>An accurate representation of the momentum budget in numerical models is essential in the quest for reliable weather forecasting, from large scales (climate models) to small scales (numerical weather prediction models, NWP). It is well known that orographic waves play an important role in large-scale circulation. The vertical propagation of such waves is associated with a vertical flux of horizontal momentum, which may be transferred to the mean flow by wave-mean flow interaction and wave-breaking (Sandu et al., 2019). The orography scales inducing such phenomena are often smaller than the model resolution, even for NWP models, leading to the need for parameterisation schemes for orographic drag. Yet, such parameterization in current models is fairly limited (Vosper et al., 2020). The present work aims to contribute to an improved understanding and parameterization of the impact of small-scale orography on the lower atmosphere with a focus on the stable atmospheric boundary layer.</p><p>As a first step, an idealized set of experiments has been designed to explore the capabilities of the Icosahedral Nonhydrostatic model in its large eddy simulation mode (ICON-LES, Dipankar et al., 2015) to represent turbulence processes in the stably-stratified atmosphere. Initial experiments testing the model performance over flat terrain (GABLS experiment, Beare et al., 2006), orographic wave generation (shallow bell-shaped topography, Xue et al., 2000) and moderate complex terrain (U-shaped valley, Burns and Chemel 2014) have been conducted. The results demonstrate that ICON-LES adequately represents the boundary layer processes for the investigated cases in comparison to the literature.</p><p>In a second step, an idealized set of experiments of atmospheric flow over idealized sinusoidal and multiscale terrain has been designed to study the impact of the orographically-induced gravity waves on the total surface drag and the vertical flux of horizontal momentum. The influence of different atmospheric conditions is assessed by varying the background wind speed and the temperature stratification at the initial time.</p>


2013 ◽  
Vol 6 (3) ◽  
pp. 5297-5344
Author(s):  
E. Pichelli ◽  
R. Ferretti ◽  
M. Cacciani ◽  
A. M. Siani ◽  
V. Ciardini ◽  
...  

Abstract. The urban forcing on thermo-dynamical conditions can largely influences local evolution of the atmospheric boundary layer. Urban heat storage can produce noteworthy mesoscale perturbations of the lower atmosphere. The new generations of high-resolution numerical weather prediction models (NWP) is nowadays largely applied also to urban areas. It is therefore critical to reproduce correctly the urban forcing which turns in variations of wind, temperature and water vapor content of the planetary boundary layer (PBL). WRF-ARW, a new model generation, has been used to reproduce the circulation in the urban area of Rome. A sensitivity study is performed using different PBL and surface schemes. The significant role of the surface forcing in the PBL evolution has been verified by comparing model results with observations coming from many instruments (LiDAR, SODAR, sonic anemometer and surface stations). The crucial role of a correct urban representation has been demonstrated by testing the impact of different urban canopy models (UCM) on the forecast. Only one of three meteorological events studied will be presented, chosen as statistically relevant for the area of interest. The WRF-ARW model shows a tendency to overestimate vertical transmission of horizontal momentum from upper levels to low atmosphere, that is partially corrected by local PBL scheme coupled with an advanced UCM. Depending on background meteorological scenario, WRF-ARW shows an opposite behavior in correctly representing canopy layer and upper levels when local and non local PBL are compared. Moreover a tendency of the model in largely underestimating vertical motions has been verified.


2014 ◽  
Vol 142 (5) ◽  
pp. 1962-1981 ◽  
Author(s):  
Linus Magnusson ◽  
Jean-Raymond Bidlot ◽  
Simon T. K. Lang ◽  
Alan Thorpe ◽  
Nils Wedi ◽  
...  

Abstract On 30 October 2012 Hurricane Sandy made landfall on the U.S. East Coast with a devastating impact. Here the performance of the ECMWF forecasts (both high resolution and ensemble) are evaluated together with ensemble forecasts from other numerical weather prediction centers, available from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive. The sensitivity to sea surface temperature (SST) and model resolution for the ECMWF forecasts are explored. The results show that the ECMWF forecasts provided a clear indication of the landfall from 7 days in advance. Comparing ensemble forecasts from different centers, the authors find the ensemble forecasts from ECMWF to be the most consistent in the forecast of the landfall of Sandy on the New Jersey coastline. The impact of the warm SST anomaly off the U.S. East Coast is investigated by running sensitivity experiments with climatological SST instead of persisting the SST anomaly from the analysis. The results show that the SST anomaly had a small effect on Sandy’s track in the forecast, but the forecasts initialized with the warm SST anomaly feature a more intense system in terms of the depth of the cyclone, wind speeds, and precipitation. Furthermore, the role of spatial resolution is investigated by comparing four global simulations, spanning from TL159 (150 km) to TL3999 (5 km) horizontal resolution. Forecasts from 3 and 5 days before the landfall are evaluated. While all resolutions predict Sandy’s landfall, at very high resolution the tropical cyclone intensity and the oceanic wave forecasts are greatly improved.


2018 ◽  
Vol 176 ◽  
pp. 02012
Author(s):  
Songhua Wu ◽  
Qichao Wang ◽  
Bingyi Liu ◽  
Jintao Liu ◽  
Kailin Zhang ◽  
...  

A compact UAV-borne Coherent Doppler Lidar (UCDL) has been developed at the Ocean University of China for the observation of wind profile and boundary layer structure in Marine Atmospheric Boundary Layer (MABL). The design, specifications and motion-correction methodology of the UCDL are presented. Preliminary results of the first flight campaign in Hailing Island in December 2016 is discussed.


2015 ◽  
Vol 28 (2) ◽  
pp. 185-191 ◽  
Author(s):  
V. A. Banakh ◽  
I. N. Smalikho ◽  
A. V. Falits ◽  
B. D. Belan ◽  
M. Yu. Arshinov ◽  
...  

2020 ◽  
Vol 35 (6) ◽  
pp. 2407-2421
Author(s):  
Irina V. Djalalova ◽  
Laura Bianco ◽  
Elena Akish ◽  
James M. Wilczak ◽  
Joseph B. Olson ◽  
...  

AbstractThe second Wind Forecast Improvement Project (WFIP2) is a multiagency field campaign held in the Columbia Gorge area (October 2015–March 2017). The main goal of the project is to understand and improve the forecast skill of numerical weather prediction (NWP) models in complex terrain, particularly beneficial for the wind energy industry. This region is well known for its excellent wind resource. One of the biggest challenges for wind power production is the accurate forecasting of wind ramp events (large changes of generated power over short periods of time). Poor forecasting of the ramps requires large and sudden adjustments in conventional power generation, ultimately increasing the costs of power. A Ramp Tool and Metric (RT&M) was developed during the first WFIP experiment, held in the U.S. Great Plains (September 2011–August 2012). The RT&M was designed to explicitly measure the skill of NWP models at forecasting wind ramp events. Here we apply the RT&M to 80-m (turbine hub-height) wind speeds measured by 19 sodars and three lidars, and to forecasts from the High-Resolution Rapid Refresh (HRRR), 3-km, and from the High-Resolution Rapid Refresh Nest (HRRRNEST), 750-m horizontal grid spacing, models. The diurnal and seasonal distribution of ramp events are analyzed, finding a noticeable diurnal variability for spring and summer but less for fall and especially winter. Also, winter has fewer ramps compared to the other seasons. The model skill at forecasting ramp events, including the impact of the modification to the model physical parameterizations, was finally investigated.


Sign in / Sign up

Export Citation Format

Share Document