scholarly journals UAV-borne coherent doppler lidar for marine atmospheric boundary layer observations

2018 ◽  
Vol 176 ◽  
pp. 02012
Author(s):  
Songhua Wu ◽  
Qichao Wang ◽  
Bingyi Liu ◽  
Jintao Liu ◽  
Kailin Zhang ◽  
...  

A compact UAV-borne Coherent Doppler Lidar (UCDL) has been developed at the Ocean University of China for the observation of wind profile and boundary layer structure in Marine Atmospheric Boundary Layer (MABL). The design, specifications and motion-correction methodology of the UCDL are presented. Preliminary results of the first flight campaign in Hailing Island in December 2016 is discussed.

2015 ◽  
Vol 35 (s1) ◽  
pp. s101001 ◽  
Author(s):  
王东祥 Wang Dongxiang ◽  
宋小全 Song Xiaoquan ◽  
冯长中 Feng Changzhong ◽  
王希涛 Wang Xitao ◽  
吴松华 Wu Songhua

2018 ◽  
Vol 176 ◽  
pp. 06014
Author(s):  
Xiaochun Zhai ◽  
Songhua Wu ◽  
Bingyi Liu ◽  
Xiaoquan Song

Shipborne wind observations by the Coherent Doppler Lidar (CDL) during the 2014 Yellow Sea campaign are presented to study the structure of the Marine Atmospheric Boundary Layer (MABL). This paper gives an analysis of the correction for horizontal and vertical wind measurement, demonstrating that the combination of the CDL with the attitude correction system enables the retrieval of wind profiles in the MABL during both anchored and cruising measurement with satisfied statistical uncertainties.


2021 ◽  
Author(s):  
Pierre-Etienne Brilouet ◽  
Marie Lothon ◽  
Sandrine Bony

<p>Tradewind clouds can exhibit a wide diversity of mesoscale organizations, and the turbulence of marine atmospheric boundary layer (MABL) can exhibit coherent structures and mesoscale circulations. One of the objectives of the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field experiment was to better understand the tight interplay between the mesoscale organization of clouds, boundary-layer processes, and the large-scale environment.</p><p>During the experiment, that took place East of Barbados over the Western Tropical Atlantic Ocean in Jan-Feb 2020, the French ATR-42 research aircraft was devoted to the characterization of the cloud amount and of the subcoud layer structure. <span>During its 17 research flights, </span><span>it</span> <span>sampled a </span><span>large diversity of large scale conditions and </span><span>cloud patterns</span><span>. </span>Multiple sensors onboard t<span>he aircraft measure</span><span>d</span> <span>high-frequency </span><span>fluctuations of potential temperature, water vapour mixing ratio and wind , allowing </span><span>for </span><span>an extensive characterization </span><span> of</span><span> the turbulence </span><span>within</span><span> the subcloud layer. </span> <span>A </span><span>quality-controled and calibrated turbulence data</span><span>set</span><span> was produced </span><span>on the basis of these measurements</span><span>, which is now </span><span> available on the EUREC4A AERIS data portal.</span></p><p><span>The </span><span>MABL </span><span>turbulent </span><span>structure i</span><span>s</span><span> studied </span><span>using this dataset, </span><span>through a spectral analysis </span><span>of the vertical velocity</span><span>. Vertical profiles of characteristic length scales reveal a non-isotropic structure with a stretching of the eddies along the mean wind. The organization strength of the turbulent field is also explored </span><span>by defining</span><span> a diagnostic based on the shape of the vertical velocity spectrum. </span><span>The </span><span>structure and the degree of organization of the </span><span>subcloud layer </span><span>are</span><span> characterized for </span><span> different type</span><span>s</span><span> of mesoscale </span><span>convective </span><span>pattern </span><span>and </span><span>as a function of</span><span> the large-scale environment, </span><span>including</span> <span>near-</span><span>surface wind </span><span>and</span> <span>lower-</span><span>tropospheric</span><span> stability conditions.</span></p><p> </p>


1996 ◽  
Author(s):  
Christian Werner ◽  
Friedrich Koepp ◽  
Rolf Heilmann ◽  
Stephan Rahm ◽  
Juergen Streicher

2019 ◽  
Vol 19 (24) ◽  
pp. 15431-15446 ◽  
Author(s):  
Mingjiao Jia ◽  
Jinlong Yuan ◽  
Chong Wang ◽  
Haiyun Xia ◽  
Yunbin Wu ◽  
...  

Abstract. A long-lived gravity wave (GW) in the atmospheric boundary layer (ABL) is analysed during a field experiment in Anqing, China (30∘37′ N, 116∘58′ E). Persistent GWs with periods ranging from 10 to 30 min over 10 h in the ABL within a 2 km height are detected by a coherent Doppler lidar from 4 to 5 September 2018. The amplitudes of the vertical wind due to these GWs are approximately 0.15–0.2 m s−1. The lifetimes of these GWs are longer than 20 wave cycles. There is no apparent phase progression with altitude. The vertical and zonal perturbations in the GWs are 90∘ out of phase, with vertical perturbations generally leading to zonal ones. Based on experiments and simplified two-dimensional computational fluid dynamics (CFD) numerical simulations, a reasonable generation mechanism of this persistent wave is proposed. A westerly low-level jet of ∼5 m s−1 exists at an altitude of 1–2 km in the ABL. The wind shear around the low-level jet leads to wave generation under the condition of light horizontal wind. Furthermore, a combination of thermal and Doppler ducts occurs in the ABL. Thus, the ducted wave motions are trapped in the ABL and have long lifetimes.


Sign in / Sign up

Export Citation Format

Share Document